Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Hip And Knee Biomechanics For Transtibial Amputees In Gait, Cycling, And Elliptical Training, Greg Orekhov Dec 2018

Hip And Knee Biomechanics For Transtibial Amputees In Gait, Cycling, And Elliptical Training, Greg Orekhov

Master's Theses

Transtibial amputees are at increased risk of contralateral hip and knee joint osteoarthritis, likely due to abnormal biomechanics. Biomechanical challenges exist for transtibial amputees in gait and cycling; particularly, asymmetry in ground/pedal reaction forces and joint kinetics is well documented and state-of-the-art passive and powered prostheses do not fully restore natural biomechanics. Elliptical training has not been studied as a potential exercise for rehabilitation, nor have any studies been published that compare joint kinematics and kinetics and ground/pedal reaction forces for the same group of transtibial amputees in gait, cycling, and elliptical training. The hypothesis was that hip and knee …


Effects Of Stride Length On Lower Limb Stiffness When Running With Body Borne Load, Nick Lobb May 2018

Effects Of Stride Length On Lower Limb Stiffness When Running With Body Borne Load, Nick Lobb

Boise State University Theses and Dissertations

Introduction: During military activities, soldiers are often required to run at a fixed cadence with body borne load, but these loads purportedly increase leg stiffness, leading to increased risk of musculoskeletal injury. Yet, to date, it is unknown how altering stride length when running with body borne load affects lower limb stiffness for males and females. Purpose: To quantify leg stiffness, and lower limb joint (hip, knee and ankle) stiffness for males and females using different stride lengths to run with body borne loads of 20 kg, 25 kg, 30 kg, and 35 kg. Methods: Twenty-seven (17 males and 10 …


Inverse Kinematic Assessment Of Rehabilitative Therapy In Children Using Orthotics, Michael P. Murphy, Jacob R. Rammer, Kaleb L. Vinohout, Meghan R. Caballero, Christy M. Cornwell, Jessica M. Fritz, Gerald F. Harris Jan 2018

Inverse Kinematic Assessment Of Rehabilitative Therapy In Children Using Orthotics, Michael P. Murphy, Jacob R. Rammer, Kaleb L. Vinohout, Meghan R. Caballero, Christy M. Cornwell, Jessica M. Fritz, Gerald F. Harris

Biomedical Engineering Faculty Research and Publications

Pathologic movement patterns are characterized by abnormal kinematics that alter how muscles support the body during walking. Individual muscles are often the target of interventions with physical therapy and surgery alike, yet the tools to assess individual muscles clinically remain limited. The aim of this study is to assess OpenSim as a clinical tool for individualized rehabilitative evaluation of children using orthotics. This anatomic and kinematic modeling study was focused on pre- and post-treatment assessment of gait characteristics in fourteen children using orthotic devices. A range of four to twelve acceptable gait capture trials was collected for each child before …