Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biomedical Engineering and Bioengineering

Interfacing A Hirudo Medicinalis Retzius Cell With Insulated Gate Of Mosfet, Rachel M. Smith Dec 2017

Interfacing A Hirudo Medicinalis Retzius Cell With Insulated Gate Of Mosfet, Rachel M. Smith

Master's Theses

Much work has been done to study the external stimulation of nervous tissue as well as the transmission of neural signals to electronics. Peter Fromherz was one of the pioneers in this area of electrophysiology, with a series of experiments in the 1990s that aimed to characterize and optimize the interface between neural tissue and transistors. In this thesis, Kurt Sjoberg and I interfaced a Retzius cell isolated from a Hirudo medicinalis ganglion with the insulated gate of a MOSFET. The goal was to see change in membrane potential that could be related Fromherz’s original 1991 work. Our experimental setup …


Neuropeptide Modulation Of The Large Conductance Potassium (Bk) Channel In The Auditory System: Therapeutic Implications For Age-Related Hearing Loss, Ellliott James Brecht Apr 2017

Neuropeptide Modulation Of The Large Conductance Potassium (Bk) Channel In The Auditory System: Therapeutic Implications For Age-Related Hearing Loss, Ellliott James Brecht

USF Tampa Graduate Theses and Dissertations

The auditory temporal processing deficits associated with age-dependent hearing decline have been increasingly attributed to issues beyond peripheral hearing loss. Age-related hearing loss (ARHL), also known as presbycusis, is linked with changes in the expression of both excitatory and inhibitory neurotransmitters in the central auditory system. There are also age-related changes in the expression and function of the ion channels which mediate action potential firing. The slow, Ca2+ activated, K+ channels of the BK-type are essential in controlling both neurotransmitter release and neural communication via alteration of action potential durations, firing frequency, and neural adaptation. There are many …


Assessing Dprestin & Nadc1 (Indy) Interaction On Calcium Oxalate Crystal Formation In A Drosophila Model Of Kidney Stones, Jessica Lin Jan 2017

Assessing Dprestin & Nadc1 (Indy) Interaction On Calcium Oxalate Crystal Formation In A Drosophila Model Of Kidney Stones, Jessica Lin

Undergraduate Research Symposium Posters

Calcium oxalate (CaOx) accounts for >70%of kidney stones, yet why CaOx stones form is poorly understood. While several factors contribute to the stone aggregation and growth, elucidating the roles of oxalate transporters can help demystify this phenomenon. Using a Drosophila model to study the formation and inhibition of CaOx crystals in the fly Malpighian tubule (MT), oxalate transport via dPrestin—the fly Slc26a6 Cl-/Ox2- exchanger was studied using both electrophysiology and MT dissection with CaOx birefringence assays. Here, the fly model suffices as it recapitulates renal oxalate excretion. Additionally, the mammalian dicarboxylate transporter NaDC1 (Indy in Drosophila) …


Persistent Inward Currents Play A Role In Muscle Dysfunction Seen In Myotonia Congenita, Ahmed Alaa Hawash Jan 2017

Persistent Inward Currents Play A Role In Muscle Dysfunction Seen In Myotonia Congenita, Ahmed Alaa Hawash

Browse all Theses and Dissertations

Myotonia congenita is a rare skeletal muscle channelopathy caused by a reduced chloride channel (ClC-1) current, which results in debilitating muscle hyperexcitability, prolonged contractions, and transient episodes of weakness. The excitatory events that trigger myotonic action potentials in the absence of stabilizing ClC-1 current are not fully understood. My in vitro intracellular recordings from a mouse homozygous knockout of ClC-1 revealed a slow after-depolarization (AfD) that triggers myotonic action potentials. The AfD is well-explained by a tetrododoxin-sensitive and voltage-dependent Na+ persistent inward current (NaPIC). Notably, this NaPIC undergoes slow inactivation over seconds, thus providing the first mechanistic explanation for the …


Persistent Inward Currents Play A Role In Muscle Dysfunction Seen In Myotonia Congenita, Ahmed Alaa Hawash Jan 2017

Persistent Inward Currents Play A Role In Muscle Dysfunction Seen In Myotonia Congenita, Ahmed Alaa Hawash

Browse all Theses and Dissertations

Myotonia congenita is a rare skeletal muscle channelopathy caused by a reduced chloride channel (ClC-1) current, which results in debilitating muscle hyperexcitability, prolonged contractions, and transient episodes of weakness. The excitatory events that trigger myotonic action potentials in the absence of stabilizing ClC-1 current are not fully understood. My in vitro intracellular recordings from a mouse homozygous knockout of ClC-1 revealed a slow after-depolarization (AfD) that triggers myotonic action potentials. The AfD is well-explained by a tetrododoxin-sensitive and voltage-dependent Na+ persistent inward current (NaPIC). Notably, this NaPIC undergoes slow inactivation over seconds, thus providing the first mechanistic explanation for the …