Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biomedical Engineering and Bioengineering

Stretch Control Of Adipocyte Insulin Signaling, Tasneem Bouzid Aug 2017

Stretch Control Of Adipocyte Insulin Signaling, Tasneem Bouzid

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Obesity and related metabolic disorders have reached global epidemic proportions in recent decades. Excess and hypertrophic adipose tissue has been implicated in the development of various pathological diseases and disorders including Type-2 diabetes mellitus (Type-2 DM). In addition to serving as energy storage for the body, evidence also suggests that adipose tissue behaves as an endocrine organ capable of secreting bioactive cytokines known as adipokines, which mediate insulin signaling pathways in various tissues. Physical exercise has been demonstrated to positively affect insulin signaling activities potentially through increasing the secretion of insulin sensitizing adipokines and/or decreasing the secretion of pro-inflammatory insulin …


Hydrodynamic Assessment Of A Porcine Small Intestinal Sub-Mucosa Bioscaffold Valve For Pediatric Mitral Valve Replacement, Omkar V. Mankame Jul 2017

Hydrodynamic Assessment Of A Porcine Small Intestinal Sub-Mucosa Bioscaffold Valve For Pediatric Mitral Valve Replacement, Omkar V. Mankame

FIU Electronic Theses and Dissertations

Valve replacement for critical heart valve diseases is in many cases not an option. Our clinical experience in pediatric compassionate care has shown robust function of porcine small intestinal submucosa (PSIS) valves. We assessed functional effectiveness of 4ply (~320µm) and 2ply (~166µm) PSIS mitral valves under pediatric-relevant hemodynamic pulsatile conditions. Key conclusions: (i)PSIS valves demonstrated statistically similar acute functionality in comparison to a commercially available valve. (ii)Energy losses were similar (p>0.05) under pediatric conditions which was not the case under adult aortic conditions. (iii)2ply valves were observed to be superior to 4ply, based on the robust hydrodynamic data, the …


Chemical And Physical Priming Of Human Mesenchymal Stem Cells To Alter Nonviral Gene Delivery Outcomes, Tyler Kozisek, Andrew Hamann, Amy Mantz, Mathias Schubert, Eva Schubert, Angela K. Pannier Apr 2017

Chemical And Physical Priming Of Human Mesenchymal Stem Cells To Alter Nonviral Gene Delivery Outcomes, Tyler Kozisek, Andrew Hamann, Amy Mantz, Mathias Schubert, Eva Schubert, Angela K. Pannier

Department of Agricultural and Biological Systems Engineering: Dissertations, Theses, and Student Research

Human Mesenchymal Stem Cells: Human mesenchymal stem cells (hMSCs) are a multipotent cell, meaning they are able to differentiate into a more mature cell type, such as osteocytes, chondrocytes, and adipocytes, that are found in numerous tissues in the human body, such as bone marrow, fat, and muscle. Since hMSCs can be derived from adult human tissues, they do not have the same ethical concern associated with them as other stem cells, such as embryonic stem cells. Due to hMSCs multipotency and ease of obtaining, they have become one of the most widely researched stem cell types in areas such …


The Effect Of Hyperthermia On Doxorubicin Therapy And Nanoparticle Penetration In Multicellular Ovarian Cancer Spheroids, Abhignyan Nagesetti Feb 2017

The Effect Of Hyperthermia On Doxorubicin Therapy And Nanoparticle Penetration In Multicellular Ovarian Cancer Spheroids, Abhignyan Nagesetti

FIU Electronic Theses and Dissertations

The efficient treatment of cancer with chemotherapy is challenged by the limited penetration of drugs into the tumor. Nanoparticles (10 – 100 nanometers) have emerged as a logical choice to specifically deliver chemotherapeutics to tumors, however, their transport into the tumor is also impeded owing to their bigger size compared to free drug moieties. Currently, monolayer cell cultures, as models for drug testing, cannot recapitulate the structural and functional complexity of in-vivo tumors. Furthermore, strategies to improve drug distribution in tumor tissues are also required. In this study, we hypothesized that hyperthermia (43°C) will improve the distribution of silica nanoparticles …


Biophysical Tools To Study Cellular Mechanotransduction, Ismeel Muhamed, Farhan Chowdhury, Venkat Maruthamuthu Feb 2017

Biophysical Tools To Study Cellular Mechanotransduction, Ismeel Muhamed, Farhan Chowdhury, Venkat Maruthamuthu

Mechanical & Aerospace Engineering Faculty Publications

The cell membrane is the interface that volumetrically isolates cellular components from the cell's environment. Proteins embedded within and on the membrane have varied biological functions: reception of external biochemical signals, as membrane channels, amplification and regulation of chemical signals through secondary messenger molecules, controlled exocytosis, endocytosis, phagocytosis, organized recruitment and sequestration of cytosolic complex proteins, cell division processes, organization of the cytoskeleton and more. The membrane's bioelectrical role is enabled by the physiologically controlled release and accumulation of electrochemical potential modulating molecules across the membrane through specialized ion channels (e.g., Na, Ca2+, K channels). …


An Enhanced Spring-Particle Model For Red Blood Cell Structural Mechanics: Application To The Stomatocyte–Discocyte– Echinocyte Transformation, Mingzhu Chen, Fergal Boyle Jan 2017

An Enhanced Spring-Particle Model For Red Blood Cell Structural Mechanics: Application To The Stomatocyte–Discocyte– Echinocyte Transformation, Mingzhu Chen, Fergal Boyle

Articles

Red blood cells (RBCs) are the most abundant cellular element suspended in blood. Together with the usual biconcave-shaped RBCs, i.e., discocytes, unusual-shaped RBCs are also observed under physiological and experimental conditions, e.g., stomatocytes and echinocytes. Stomatocytes and echinocytes are formed from discocytes and in addition can revert back to being discocytes; this shape change is known as the stomatocyte–discocyte–echinocyte (SDE) transformation. To-date, limited research has been conducted on the numerical prediction of the full SDE transformation. Spring- particle RBC (SP-RBC) models are commonly used to numerically predict RBC mechanics and rheology. However, these models are incapable of predicting the full …