Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Gui For Mri-Compatible Neural Stimulator And Recorder, Soo Han Soon, Nishant Babaria, Ranajay Mandal, Zhongming Liu Aug 2017

Gui For Mri-Compatible Neural Stimulator And Recorder, Soo Han Soon, Nishant Babaria, Ranajay Mandal, Zhongming Liu

The Summer Undergraduate Research Fellowship (SURF) Symposium

Functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) are useful tools to analyze brain activities given active stimulation. However, the electromagnetic noise from the MRI distorts the brain signal recording and damages the subject with excessive heat generated on the electrodes attached to the skin. MRI-compatible recording and stimulation systems previously developed at LIBI lab were capable of removing the electromagnetic noise during the imaging process. Previously, the hardware systems had required the integrative software that could control both circuits simultaneously and enable users to easily change recording and stimulation parameters. Graphical user interface (GUI) programmed with computer language informed …


A Comprehensive Analysis On Eeg Signal Classification Using Advanced Computational Analysis, Kaushik Bhimraj Jan 2017

A Comprehensive Analysis On Eeg Signal Classification Using Advanced Computational Analysis, Kaushik Bhimraj

Electronic Theses and Dissertations

Electroencephalogram (EEG) has been used in a wide array of applications to study mental disorders. Due to its non-invasive and low-cost features, EEG has become a viable instrument in Brain-Computer Interfaces (BCI). These BCI systems integrate user's neural features with robotic machines to perform tasks. However, due to EEG signals being highly dynamic in nature, BCI systems are still unstable and prone to unanticipated noise interference. An important application of this technology is to help facilitate the lives of the tetraplegic through assimilating human brain impulses and converting them into mechanical motion. However, BCI systems are remarkably challenging to implement …