Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biomedical Engineering and Bioengineering

Electrospinning Of Polycaprolactone Core-Shell Nanofibers With Anti-Cancer Drug, Sakib Iqbal, Mujibur Khan, Saheem Absar, Andrew Diamanduros, Samuel Chambers Apr 2015

Electrospinning Of Polycaprolactone Core-Shell Nanofibers With Anti-Cancer Drug, Sakib Iqbal, Mujibur Khan, Saheem Absar, Andrew Diamanduros, Samuel Chambers

GS4 Georgia Southern Student Scholars Symposium

Encapsulation of a model anti-cancer drug, 5-Fluorouracul (5-FU) into biocompatible core-shell nanofibers of polycaprolactone (PCL) nanofibers was fabricated using a coaxial electrospinning process. Our work aims to solve these issues using a novel method of fabrication of fibers featuring confinement of drugs within a biodegradable core-shell structure, thereby permitting sustained release of drugs to specific sites of treatment, such as tissues affected with tumor cells. The coaxial electrospinning was performed using a sheath polymer solution consisting of a 14 wt% PCL solution and a 5 wt% solution of 5-FU as the core solution. Dimethylformamide (DMF) was used as the solvent …


Fiber Scaffolds Of Poly (Glycerol-Dodecanedioate) And Its Derivative Via Electrospinning For Neural Tissue Engineering, Xizi Dai Mar 2015

Fiber Scaffolds Of Poly (Glycerol-Dodecanedioate) And Its Derivative Via Electrospinning For Neural Tissue Engineering, Xizi Dai

FIU Electronic Theses and Dissertations

Peripheral nerves have demonstrated the ability to bridge gaps of up to 6 mm. Peripheral Nerve System injury sites beyond this range need autograft or allograft surgery. Central Nerve System cells do not allow spontaneous regeneration due to the intrinsic environmental inhibition. Although stem cell therapy seems to be a promising approach towards nerve repair, it is essential to use the distinct three-dimensional architecture of a cell scaffold with proper biomolecule embedding in order to ensure that the local environment can be controlled well enough for growth and survival. Many approaches have been developed for the fabrication of 3D scaffolds, …


Fem Of Electrospinning Compared To Inkjet Printing Model, Maikel Ghaly Jan 2015

Fem Of Electrospinning Compared To Inkjet Printing Model, Maikel Ghaly

Theses

Electrospinning is a process that uses electrostatic forces to produce nanofibers, or fibers in the nano scale. Nanofibers are widely used in many fields like drug delivery and tissue engineering. Nowadays, it is gaining much attention in the research community as an advantageous process. However, there are many parameters that controlnanofiber formation. This research intends to develop a model of electrospinning on the basis of an inkjet printer technique by using a computer aided simulation (COMSOL). Inkjet printing is a technique that delivers small volumes at high repetitions which can betransported by electrostatic forces through the air onto their intended …


Peracetic Acid Sterilization Of Electrospun Polycaprolactone Scaffolds, Suyog Yoganarasimha Jan 2015

Peracetic Acid Sterilization Of Electrospun Polycaprolactone Scaffolds, Suyog Yoganarasimha

Theses and Dissertations

Sterilization of tissue engineered scaffolds is an important regulatory issue and is at the heart of patient safety. With the introduction of new biomaterials and micro/nano structured scaffolds, it is critical that the mode of sterilization preserve these built-in features. Conventional sterilization methods are not optimal for engineered polymeric systems and hence alternate systems need to be identified and validated. PCL is polyester with a low melting point (heat labile), susceptible to hydrolysis and is popular in tissue engineering. Electrospinning generates some nanoscale features within the scaffold, the integrity of which can be affected by sterilization method. Chapter 1 explores …


Peracetic Acid: A Practical Agent For Sterilizing Heat-Labile Polymeric Tissue-Engineering Scaffolds, William R. Trahan Jan 2015

Peracetic Acid: A Practical Agent For Sterilizing Heat-Labile Polymeric Tissue-Engineering Scaffolds, William R. Trahan

Theses and Dissertations

Advanced biomaterials and sophisticated processing technologies aim to fabricate tissue-engineering scaffolds that can predictably interact within a biological environment at a cellular level. Sterilization of such scaffolds is at the core of patient safety and is an important regulatory issue that needs to be addressed prior to clinical translation. In addition, it is crucial that meticulously engineered micro- and nano- structures are preserved after sterilization. Conventional sterilization methods involving heat, steam and radiation are not compatible with engineered polymeric systems because of scaffold degradation and loss of architecture. Using electrospun scaffolds made from polycaprolactone (PCL), a low melting polymer, and …