Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Biomedical Engineering and Bioengineering

Long-Acting Antituberculous Therapeutic Nanoparticles Target Macrophage Endosomes, Benson J. Edagwa, Dongwei Guo, Pavan Puligujja, Han Chen, Joellyn Mcmillan, Xinming Liu, Howard Gendelman, Prabagaran Narayanasamy Dec 2014

Long-Acting Antituberculous Therapeutic Nanoparticles Target Macrophage Endosomes, Benson J. Edagwa, Dongwei Guo, Pavan Puligujja, Han Chen, Joellyn Mcmillan, Xinming Liu, Howard Gendelman, Prabagaran Narayanasamy

Nebraska Center for Biotechnology: Faculty and Staff Publications

Eradication of Mycobacterium tuberculosis (MTB) infection requires daily administration of combinations of rifampin (RIF), isoniazid [isonicotinylhydrazine (INH)], pyrazinamide, and ethambutol, among other drug therapies. To facilitate and optimize MTB therapeutic selections, a mononuclear phagocyte (MP; monocyte, macrophage, and dendritic cell)-targeted drug delivery strategy was developed. Long-acting nanoformulations of RIF and an INH derivative, pentenyl- INH (INHP), were prepared, and their physicochemical properties were evaluated. This included the evaluation of MP particle uptake and retention, cell viability, and antimicrobial efficacy. Drug levels reached 6 μg/106 cells in human monocyte-derived macrophages (MDMs) for nanoparticle treatments compared with 0.1 μg/106 cells for native …


Movement Effects On The Flow Physics And Nutrient Delivery In Engineered Valvular Tissues, Manuel Salinas Nov 2014

Movement Effects On The Flow Physics And Nutrient Delivery In Engineered Valvular Tissues, Manuel Salinas

FIU Electronic Theses and Dissertations

Mechanical conditioning has been shown to promote tissue formation in a wide variety of tissue engineering efforts. However the underlying mechanisms by which external mechanical stimuli regulate cells and tissues are not known. This is particularly relevant in the area of heart valve tissue engineering (HVTE) owing to the intense hemodynamic environments that surround native valves. Some studies suggest that oscillatory shear stress (OSS) caused by steady flow and scaffold flexure play a critical role in engineered tissue formation derived from bone marrow derived stem cells (BMSCs). In addition, scaffold flexure may enhance nutrient (e.g. oxygen, glucose) transport. In this …


Virus-Host Mucosal Interactions During Early Siv Rectal Transmission, Wuxun Lu, Fangrui Ma, Alexander Churbanov, Yanmin Wan, Yue Li, Guobin Kang, Zhe Yuan, Dong Wang, Chi Zhang, Jianqing Xu, Mark Lewis, Qingsheng Li Sep 2014

Virus-Host Mucosal Interactions During Early Siv Rectal Transmission, Wuxun Lu, Fangrui Ma, Alexander Churbanov, Yanmin Wan, Yue Li, Guobin Kang, Zhe Yuan, Dong Wang, Chi Zhang, Jianqing Xu, Mark Lewis, Qingsheng Li

Nebraska Center for Biotechnology: Faculty and Staff Publications

To deepen our understanding of early rectal transmission of HIV-1, we studied virus-host interactions in the rectal mucosa using simian immunodeficiency virus (SIV)-Indian rhesus macaque model and mRNA deep sequencing. We found that rectal mucosa actively responded to SIV as early as 3 days post-rectal inoculation (dpi) and mobilized more robust responses at 6 and 10 dpi. Our results suggests that the failure of the host to contain virus replication at the portal of entry is attributable to both a high-level expression of lymphocyte chemoattractant, proinflammatory and immune activation genes, which can recruit and activate viral susceptible target cells into …


Plasmonic Optical Sensors: Performance Analysis And Engineering Towards Biosensing, Peipei Jia Jun 2014

Plasmonic Optical Sensors: Performance Analysis And Engineering Towards Biosensing, Peipei Jia

Electronic Thesis and Dissertation Repository

Surface plasmon resonance (SPR) sensing for quantitative analysis of chemical reactions and biological interactions has become one of the most promising applications of plasmonics. This thesis focuses on performance analysis for plasmonic sensors and implementation of plamonic optical sensors with novel nanofabrication techniques.

A universal performance analysis model is established for general two-dimensional plasmonic sensors. This model is based on the fundamental facts of surface plasmon theory. The sensitivity only depends on excitation light wavelength as well as dielectric properties of metal and dielectrics. The expression involves no structure-specified parameters, which validates this formula in broad cases of periodic, quasiperiodic …


Developent Of A Phospholipid Encapsulation Process For Quantum Dots To Be Used In Biologic Applications, Logan Grimes Jun 2014

Developent Of A Phospholipid Encapsulation Process For Quantum Dots To Be Used In Biologic Applications, Logan Grimes

Master's Theses

The American Cancer Society predicts that 1,665,540 people will be diagnosed with cancer, and 585,720 people will die from cancer in 2014. One of the most common types of cancer in the United States is skin cancer. Melanoma alone is predicted to account for 10,000 of the cancer related deaths in 2014. As a highly mobile and aggressive form of cancer, melanoma is difficult to fight once it has metastasized through the body. Early detection in such varieties of cancer is critical in improving survival rates in afflicted patients. Present methods of detection rely on visual examination of suspicious regions …


Trait Selection And Welfare Of Genetically Engineered Animals In Agriculture, Michael Greger May 2014

Trait Selection And Welfare Of Genetically Engineered Animals In Agriculture, Michael Greger

Michael Greger, MD, FACLM

The release of the Final Guidance from the US Food and Drug Administration on the commercialization of genetically engineered animals has sparked renewed discussion over the ethical, consumer, and regulatory implications of transgenesis in animal agriculture. Animal welfare critiques have focused on unexpected phenotypic effects in animals used in transgenic research, rather than on the health and welfare implications of the intended productivity enhancement. Unless breeding goals are redefined to reflect social concerns, the occurrence and magnitude of undesirable side effects may increase and consumer confidence in the nascent technology may be undermined.


Physiological And Transcriptional Memory In Guard Cells During Repetitive Dehydration Stress, Laetitia Virlouvet, Michael E. Fromm Jan 2014

Physiological And Transcriptional Memory In Guard Cells During Repetitive Dehydration Stress, Laetitia Virlouvet, Michael E. Fromm

Nebraska Center for Biotechnology: Faculty and Staff Publications

Arabidopsis plants subjected to a daily dehydration stress and watered recovery cycle display physiological and transcriptional stress memory. Previously stressed plants have stomatal apertures that remain partially closed during a watered recovery period, facilitating reduced transpiration during a subsequent dehydration stress. Guard cells (GCs) display transcriptional memory that is similar to that in leaf tissues for some genes, but display GC-specific transcriptional memory for other genes. The rate-limiting abscisic acid (ABA) biosynthetic genes NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3) and ALDEHYDE OXIDASE 3 (AAO3) are expressed at much higher levels in GCs, particularly during the watered recovery interval, relative to their low …


The Pseudomonas Syringae Type Iii Effector Hopd1 Suppresses Effector-Triggered Immunity, Localizes To The Endoplasmic Reticulum, And Targets The Arabidopsis Transcription Factor Ntl9, Anna Block, Tania Y. Toruno, Christian G. Elowsky, Chi Zhang, Jens Steinbrenner, Jim Beynon, James R. Alfano Jan 2014

The Pseudomonas Syringae Type Iii Effector Hopd1 Suppresses Effector-Triggered Immunity, Localizes To The Endoplasmic Reticulum, And Targets The Arabidopsis Transcription Factor Ntl9, Anna Block, Tania Y. Toruno, Christian G. Elowsky, Chi Zhang, Jens Steinbrenner, Jim Beynon, James R. Alfano

Nebraska Center for Biotechnology: Faculty and Staff Publications

Pseudomonas syringae type III effectors are known to suppress plant immunity to promote bacterial virulence. However, the activities and targets of these effectors are not well understood. We used genetic, molecular, and cell biology methods to characterize the activities, localization, and target of the HopD1 type III effector in Arabidopsis. HopD1 contributes to P. syringae virulence in Arabidopsis and reduces effector-triggered immunity (ETI) responses but not pathogen-associated molecular pattern-triggered immunity (PTI) responses. Plants expressing HopD1 supported increased growth of ETI-inducing P. syringae strains compared with wild-type Arabidopsis. We show that HopD1 interacts with the membrane-tethered Arabidopsis transcription factor NTL9 and …