Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biotechnology

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 177

Full-Text Articles in Biomedical Engineering and Bioengineering

Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia Dec 2023

Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia

Journal of Nonprofit Innovation

Urban farming can enhance the lives of communities and help reduce food scarcity. This paper presents a conceptual prototype of an efficient urban farming community that can be scaled for a single apartment building or an entire community across all global geoeconomics regions, including densely populated cities and rural, developing towns and communities. When deployed in coordination with smart crop choices, local farm support, and efficient transportation then the result isn’t just sustainability, but also increasing fresh produce accessibility, optimizing nutritional value, eliminating the use of ‘forever chemicals’, reducing transportation costs, and fostering global environmental benefits.

Imagine Doris, who is …


Controlled Radiation Capsule For Precision And Rapid Cancer Treatment, Hoseon Lee, Zsolt Kollar, Bailey R. White, Junia Nguyen, David Roque, Sowjanya Palagani Nov 2023

Controlled Radiation Capsule For Precision And Rapid Cancer Treatment, Hoseon Lee, Zsolt Kollar, Bailey R. White, Junia Nguyen, David Roque, Sowjanya Palagani

Symposium of Student Scholars

This research aims to transform cancer treatment through the optimization of brachytherapy, with a focus on reducing treatment duration, setup complexities, and financial burdens, all while emphasizing patient safety. Patients living at a distance from radiation clinics, particularly those undergoing extended Low Dose Radiation brachytherapy, often struggle with the formidable financial challenges associated with securing nearby accommodations. In response to these issues, the research introduces a radiation capsule designed to condense the conventional six-month treatment period to approximately just one week, thereby significantly reducing the duration of required accommodations. This capsule is especially relevant considering the construction cost of $40 …


Investigating The Potential Of A Cell-Based Gene Editing Therapy For Inherited Metabolic Liver Disease, Ilayda Ates Aug 2023

Investigating The Potential Of A Cell-Based Gene Editing Therapy For Inherited Metabolic Liver Disease, Ilayda Ates

All Dissertations

Inherited metabolic diseases (IMDs) affecting the liver are relatively rare but collectively have a prevalence of 1 in 800 live births. These diseases result from autosomal recessive single-gene mutations, leading to organ dysfunction and potentially fatal consequences if left untreated. One potential therapeutic strategy for IMDs of the liver involves using CRISPR-Cas9-induced loss of function mutations. However, translating this approach into the clinic is limited by the need for safe and effective CRISPR delivery methods. Adeno-associated viral vectors (AAVs), commonly used for CRISPR delivery, are associated with significant safety and efficacy concerns, including risks for immunogenicity, off-target mutagenesis, and genotoxicity …


The Development Of A Primer Payload With Microparticles For Uti Pathogen Identification Using Polythymidine- Modified Lamp Primers In Droplet Lamp, Jonas Otoo May 2023

The Development Of A Primer Payload With Microparticles For Uti Pathogen Identification Using Polythymidine- Modified Lamp Primers In Droplet Lamp, Jonas Otoo

KGI Theses and Dissertations

Nucleic acid amplification tests (NAATs) are among the diagnostic tests with the highest sensitivity and specificity. However, they are more complex to develop than other diagnostic tests such as biochemical tests and lateral flow immunoassay tests. Polymerase chain reaction (PCR) is the gold standard for NAATs. PCR requires thermal cycling to achieve clonal amplification of the target pathogen DNA for diagnosis. Thermal cycling poses a challenge in the development of PCR diagnostics for point-of-care (POC) settings. Loop-mediated isothermal amplification (LAMP) offers an isothermal method for NAATs diagnostics. The advancement of the microfluidics field significantly enhances the development of LAMP diagnostics …


Assesment Of Structure, Function, And Microevolutionary Dynamics Of Extrachromosomal Circular Dna In Chinese Hamster Ovary Cells, Dylan Chitwood May 2023

Assesment Of Structure, Function, And Microevolutionary Dynamics Of Extrachromosomal Circular Dna In Chinese Hamster Ovary Cells, Dylan Chitwood

All Dissertations

Chinese hamster ovary (CHO) cell lines are among the most popular expression hosts used in biopharmaceutical manufacturing due to relative ease of culture, capacity to perform human-like post-translational modifications, and non-susceptibility to viruses. However, the intrinsic plasticity of the CHO genome can lead to undesired genetic rearrangements, phenotypic shifts, reduced product quality, and early culture termination that prevents continuous biomanufacturing. A characteristic of plastic and unstable genomes that is poorly understood in CHO cells is extrachromosomal circular DNA (eccDNA). EccDNAs are focal amplifications of the genome that reside in the extranuclear space. These plasmid-like entities are structurally complex and are …


Sea-Phages Course-Based Undergraduate Research Experience For Creating A Biotechnology Workforce Development Pipeline, Daphne Fauber, Kari Clase, Carol Weaver Mar 2023

Sea-Phages Course-Based Undergraduate Research Experience For Creating A Biotechnology Workforce Development Pipeline, Daphne Fauber, Kari Clase, Carol Weaver

Graduate Industrial Research Symposium

Purdue University has been a member of the SEA-PHAGES (Science Education Alliance-Phage Hunters Advancing Genomics and Evolutionary Science) program since 2011. This program, created in conjunction with the Howard Hughes Medical Institute (HHMI), facilitates undergraduate curriculum for the authentic discovery of novel bacteriophages within the classroom. Since joining the program, undergraduates at Purdue have harnessed wet lab and bioinformatics principles to contribute over 200 previously uncharacterized bacteriophages and 25 novel genomes to the wider scientific literature. The SEA-PHAGES classes at Purdue have resulted in tangible professional deliverables for students through conference presentations and publications. Student outcomes also include transferable skills …


Making Sense Of Big (Kinematic) Data: A Comprehensive Analysis Of Movement Parameters In A Diverse Population, Naomi Wilma Nunis Jan 2023

Making Sense Of Big (Kinematic) Data: A Comprehensive Analysis Of Movement Parameters In A Diverse Population, Naomi Wilma Nunis

University of the Pacific Theses and Dissertations

OBJECTIVE

The purpose of this study was to determine how kinematic, big data can be evaluated using computational, comprehensive analysis of movement parameters in a diverse population.

METHODS

Retrospective data was collected, cleaned, and reviewed for further analysis of biomechanical movement in an active population using 3D collinear resistance loads. The active sample of the population involved in the study ranged from age 7 to 82 years old and respectively identified as active in 13 different sports. Moreover, a series of exercises were conducted by each participant across multiple sessions. Exercises were measured and recorded based on 6 distinct biometric …


Long-Range Aceo Phenomena In Microfluidic Channel, Diganta Dutta, Keifer Smith, Xavier Palmer Jan 2023

Long-Range Aceo Phenomena In Microfluidic Channel, Diganta Dutta, Keifer Smith, Xavier Palmer

Electrical & Computer Engineering Faculty Publications

Microfluidic devices are increasingly utilized in numerous industries, including that of medicine, for their abilities to pump and mix fluid at a microscale. Within these devices, microchannels paired with microelectrodes enable the mixing and transportation of ionized fluid. The ionization process charges the microchannel and manipulates the fluid with an electric field. Although complex in operation at the microscale, microchannels within microfluidic devices are easy to produce and economical. This paper uses simulations to convey helpful insights into the analysis of electrokinetic microfluidic device phenomena. The simulations in this paper use the Navier–Stokes and Poisson Nernst–Planck equations solved using COMSOL …


Exploring Ph Gradient Phenomena In Non-Linear Electrokinetic Microfluidic Devices, Azade Tahmasebi Jan 2023

Exploring Ph Gradient Phenomena In Non-Linear Electrokinetic Microfluidic Devices, Azade Tahmasebi

Dissertations, Master's Theses and Master's Reports

Electrokinetic microfluidics is a versatile technology utilized within lab on a chip (LOC) devices for diagnostic and analytical applications; advantages include reduced resource demands, flexibility, and simplicity of use. Dielectrophoresis (DEP) is a precision nonlinear electrokinetic tool utilized within microfluidic microdevices to induce polarization and control bioparticle motions for applications that range from hemoglobin separations to cancer cell isolation and detection. Despite promising results, undesired side phenomena can occur in electrokinetic systems which impede reproducibility and accuracy. These unfavorable phenomena have not been comprehensively explored in the literature. Prior preliminary research suggests the fundamental phenomena originate from microelectrodes utilized in …


Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian Oct 2022

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian

Doctoral Dissertations

The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …


A Rapid And Ultra-Sensitive Biosensing Platform Based On Tunable Dielectrophoresis For Robust Poc Applications, Yu Jiang Aug 2022

A Rapid And Ultra-Sensitive Biosensing Platform Based On Tunable Dielectrophoresis For Robust Poc Applications, Yu Jiang

Doctoral Dissertations

With the ongoing pandemic, there have been increasing concerns recently regarding major public health issues such as abuse of organophosphorus compounds, pathogenic bacterial infections, and biosecurity in agricultural production. Biosensors have long been considered a kernel technology for next-generation diagnostic solutions to improve food safety and public health. Significant amounts of effort have been devoted to inventing novel sensing mechanisms, modifying their designs, improving their performance, and extending their application scopes. However, the reliability and selectivity of most biosensors still have much to be desired, which holds back the development and commercialization of biosensors, especially for on-site and point-of-care (POC) …


Cellular Mechanisms Underlying State-Dependent Neural Inhibition With Magnetic Stimulation, Hui Ye, Vincent Chiun-Fan Chen, Jenna Hendee Jul 2022

Cellular Mechanisms Underlying State-Dependent Neural Inhibition With Magnetic Stimulation, Hui Ye, Vincent Chiun-Fan Chen, Jenna Hendee

Engineering Science Faculty Publications

Novel stimulation protocols for neuromodulation with magnetic fields are explored in clinical and laboratory settings. Recent evidence suggests that the activation state of the nervous system plays a significant role in the outcome of magnetic stimulation, but the underlying cellular and molecular mechanisms of state-dependency have not been completely investigated. We recently reported that high frequency magnetic stimulation could inhibit neural activity when the neuron was in a low active state. In this paper, we investigate state-dependent neural modulation by applying a magnetic field to single neurons, using the novel micro-coil technology. High frequency magnetic stimulation suppressed single neuron activity …


Functional Requirements For A Samd14-Capping Protein Complex In Stress Erythropoiesis, Suhita Ray, Linda Chee, Yichao Zhou, Meg A. Schaefer, Michael J. Naldrett, Sophie Alvarez, Nicholas T. Woods, Kyle J. Hewitt Jun 2022

Functional Requirements For A Samd14-Capping Protein Complex In Stress Erythropoiesis, Suhita Ray, Linda Chee, Yichao Zhou, Meg A. Schaefer, Michael J. Naldrett, Sophie Alvarez, Nicholas T. Woods, Kyle J. Hewitt

Nebraska Center for Biotechnology: Faculty and Staff Publications

Acute anemia induces rapid expansion of erythroid precursors and accelerated differentiation to replenish erythrocytes. Paracrine signals—involving cooperation between stem cell factor (SCF)/Kit signaling and other signaling inputs—are required for the increased erythroid precursor activity in anemia. Our prior work revealed that the sterile alpha motif (SAM) domain 14 (Samd14) gene increases the regenerative capacity of the erythroid system in a mouse genetic model and promotes stress-dependent Kit signaling. However, the mechanism underlying Samd14’s role in stress erythropoiesis is unknown. We identified a protein-protein interaction between Samd14 and the α- and β-heterodimers of the F-actin capping protein (CP) complex. Knockdown of …


Molecular-Level Control Over Ionic Conduction And Ionic Current Direction By Designing Macrocycle-Based Ionomers, Shyambo Chatterjee, Ehsan Zamani, Seefat Farzin, Iman Evazzade, Oghenetega Allen Obewhere, Tyler James Johnson, Vitaly Alexandrov, Shudipto Konika Dishari May 2022

Molecular-Level Control Over Ionic Conduction And Ionic Current Direction By Designing Macrocycle-Based Ionomers, Shyambo Chatterjee, Ehsan Zamani, Seefat Farzin, Iman Evazzade, Oghenetega Allen Obewhere, Tyler James Johnson, Vitaly Alexandrov, Shudipto Konika Dishari

Department of Chemical and Biomolecular Engineering: Faculty Publications

Poor ionic conductivity of the catalyst-binding, submicrometer- thick ionomer layers in energy conversion and storage devices is a huge challenge. However, ionomers are rarely designed keeping in mind the specific issues associated with nanoconfinement. Here, we designed nature-inspired ionomers (calix-2) having hollow, macrocyclic, calix[4]arene-based repeat units with precise, sub-nanometer diameter. In ≤100 nm-thick films, the in-plane proton conductivity of calix-2 was up to 8 times higher than the current benchmark ionomer Nafion at 85% relative humidity (RH), while it was 1−2 orders of magnitude higher than Nafion at 20−25% RH. Confocal laser scanning microscopy and other synthetic techniques allowed us …


Interactions Between Soft Nanoparticles And Mammalian Cells, Mitchell Raith May 2022

Interactions Between Soft Nanoparticles And Mammalian Cells, Mitchell Raith

Doctoral Dissertations

Nanoparticles have been of interest to the pharmaceutical industry since the 1980s. The first FDA approved nanoparticle-based therapies included liposomal anesthesia agents. Since then, the amount of FDA-approved nanoparticle therapies remains low. This is because nanoparticle-patient interactions can be very complex and are not well understood. Complicating factors also include increasing obesity rates among the patient population and many small animal pre-clinical trials are completed with healthy, lean animals. The biochemical differences between lean and obese patients prevents early studies from accurately predicting nanoparticle clinical behaviors. Many nanoparticles fail in trails. In this thesis, I aimed to uncover how nanoparticles …


Europium-Doped Cerium Oxide Nanoparticles For Microglial Aβ Clearance And Homeostasis, Jatin Machhi, Pravin Yeapuri, Milica Markovic, Milankumar Patel, Wenhui Yan, Yaman Lu, Jacob D. Cohen, Mahmudul Hasan, Mai Mohamed Abdelmoaty, You Zhou, Huangui Xiong, Xinglong Wang, R. Lee Mosley, Howard E. Gendelman, Bhavesh D. Kevadiya Apr 2022

Europium-Doped Cerium Oxide Nanoparticles For Microglial Aβ Clearance And Homeostasis, Jatin Machhi, Pravin Yeapuri, Milica Markovic, Milankumar Patel, Wenhui Yan, Yaman Lu, Jacob D. Cohen, Mahmudul Hasan, Mai Mohamed Abdelmoaty, You Zhou, Huangui Xiong, Xinglong Wang, R. Lee Mosley, Howard E. Gendelman, Bhavesh D. Kevadiya

Nebraska Center for Biotechnology: Faculty and Staff Publications

Alzheimer’s disease (AD) is the most common neurodegenerative disorder. Pathologically, it is characterized by the deposition of amyloid beta (Aβ) plaques and presence of neurofibrillary tangles. These drive microglia neuroinflammation and consequent neurodegeneration. While the means to affect Aβ plaque accumulation was achieved how it affects disease outcomes remains uncertain. Cerium oxide (CeO2) reduces Aβ plaques, oxidative stress, inflammation, and Alzheimer’s disease (AD) signs and symptoms. Specifically, CeO2 nanoparticles (CeO2NPs) induces free radical scavenging and cell protective intracellular signaling. This can ameliorate the pathobiology of an AD-affected brain. In order to investigate, CeO2NPs …


Characterizing Mechanical Regulation Of Bone Metastatic Breast Cancer Cells, Boyuan Liu Mar 2022

Characterizing Mechanical Regulation Of Bone Metastatic Breast Cancer Cells, Boyuan Liu

Doctoral Dissertations

Breast cancer most frequently metastasizes to the skeleton. Bone metastatic cancer is incurable and induces wide-spread bone osteolysis, resulting in significant patient morbidity and mortality. Mechanical stimuli in the skeleton are an important microenvironmental parameter that modulates tumor formation, osteolysis, and tumor cell-bone cell signaling, but which mechanical signals are the most beneficial and the corresponding molecular mechanisms are unknown. This work focused on bone matrix deformation and interstitial fluid flow based on their well-known roles in bone remodeling and in primary breast cancer. The goal of our research was to establish a platform that could define the relationship between …


Genome Structure And Evolutionary History Of Frankincense Producing Boswellia Sacra, Abdul Latif Khan, Ahmed Al-Harrasi, Jin-Peng Wang, Sajjad Asaf, Jean-Jack Riethoven, Tariq Shehzad, Chia-Sin Liew, Xiao-Ming Song, Daniel P. Schachtman, Chao Liu, Ji-Gao Yu, Zhi-Kang Zhang, Fan-Bo Meng, Jia-Qing Yuan, Chen-Dan Wei, He Guo, Xuewen Wang, Ahmed Al-Rawahi, In-Jung Lee, Jeffrey L. Bennetzen, Xi-Yin Wang Jan 2022

Genome Structure And Evolutionary History Of Frankincense Producing Boswellia Sacra, Abdul Latif Khan, Ahmed Al-Harrasi, Jin-Peng Wang, Sajjad Asaf, Jean-Jack Riethoven, Tariq Shehzad, Chia-Sin Liew, Xiao-Ming Song, Daniel P. Schachtman, Chao Liu, Ji-Gao Yu, Zhi-Kang Zhang, Fan-Bo Meng, Jia-Qing Yuan, Chen-Dan Wei, He Guo, Xuewen Wang, Ahmed Al-Rawahi, In-Jung Lee, Jeffrey L. Bennetzen, Xi-Yin Wang

Nebraska Center for Biotechnology: Faculty and Staff Publications

Boswellia sacra Flueck (family Burseraceae) tree is wounded to produce frankincense. We report its de novo assembled genome (667.8 Mb) comprising 18,564 high-confidence protein-encoding genes. Comparing conserved single-copy genes across eudicots suggest >97% gene space assembly of B. sacra genome. Evolutionary history shows B. sacra gene-duplications derived from recent paralogous events and retained from ancient hexaploidy shared with other eudicots. The genome indicated a major expansion of Gypsy retroelements in last 2 million years. The B. sacra genetic diversity showed four clades intermixed with a primary genotype—dominating most resin-productive trees. Further, the stemtranscriptome revealed that wounding concurrently activates phytohormones signaling, …


Characterizing Isoform Switching Events In Esophageal Adenocarcinoma, Yun Zhang, Katherine M. Weh, Connor L. Howard, Jean-Jack Riethoven, Jennifer L. Clarke, Kiran H. Lagisetty, Jules Lin, Rishindra M. Reddy, Andrew C. Chang, David G. Beer, Laura A. Kresty Jan 2022

Characterizing Isoform Switching Events In Esophageal Adenocarcinoma, Yun Zhang, Katherine M. Weh, Connor L. Howard, Jean-Jack Riethoven, Jennifer L. Clarke, Kiran H. Lagisetty, Jules Lin, Rishindra M. Reddy, Andrew C. Chang, David G. Beer, Laura A. Kresty

Nebraska Center for Biotechnology: Faculty and Staff Publications

Isoform switching events with predicted functional consequences are common in many cancers, but characterization of switching events in esophageal adenocarcinoma (EAC) is lacking. Next-generation sequencing was used to detect levels of RNA transcripts and identify specific isoforms in treatment- naïve esophageal tissues ranging from premalignant Barrett’s esophagus (BE), BE with low- or high-grade dysplasia (BE.LGD, BE.HGD), and EAC. Samples were stratified by histopathology and TP53 mutation status, identifying significant isoform switching events with predicted functional consequences. Comparing BE.LGD with BE.HGD, a histopathology linked to cancer progression, isoform switching events were identified in 75 genes including KRAS, RNF128, and WRAP53. Stratification …


The Third International Hackathon For Applying Insights Into Large-Scale Genomic Composition To Use Cases In A Wide Range Of Organisms, Kimberly Walker, Divya Kalra, Rebecca Lowdon, Guangyi Chen, Fritz J. Sedlazeck, Ben Busby, Chia-Sin Liew, Et Al. Jan 2022

The Third International Hackathon For Applying Insights Into Large-Scale Genomic Composition To Use Cases In A Wide Range Of Organisms, Kimberly Walker, Divya Kalra, Rebecca Lowdon, Guangyi Chen, Fritz J. Sedlazeck, Ben Busby, Chia-Sin Liew, Et Al.

Nebraska Center for Biotechnology: Faculty and Staff Publications

In October 2021, 59 scientists from 14 countries and 13 U.S. states collaborated virtually in the Third Annual Baylor College of Medicine & DNANexus Structural Variation hackathon. The goal of the hackathon was to advance research on structural variants (SVs) by prototyping and iterating on open-source software. This led to nine hackathon projects focused on diverse genomics research interests, including various SV discovery and genotyping methods, SV sequence reconstruction, and clinically relevant structural variation, including SARS-CoV-2 variants. Repositories for the projects that participated in the hackathon are available at https://github.com/collaborativebioinformatics.


Design And Development Of Medical Devices For Multifaceted Applications, Madisyn Messmore Jan 2022

Design And Development Of Medical Devices For Multifaceted Applications, Madisyn Messmore

Honors Undergraduate Theses

The fields of biotechnology and biomedical sciences are rapidly evolving and involve the constant growth of knowledge. As a consequence, engineering design has to also remain at the cutting edge in order to not inhibit the growth of these fields. This study focuses on engineering design and analysis as it pertains to the field of biotechnology, at every step of the engineering process. More specifically, how the engineering design and analysis approach can assist in solving medical problems relating to bone diseases and biomaterials. The first part of the study focuses on a project to design and manufacture a novel …


Real-Time Monitoring Of Cell Death Progress Using Capacitance Spectroscopy, Suyang Wu Dec 2021

Real-Time Monitoring Of Cell Death Progress Using Capacitance Spectroscopy, Suyang Wu

Electronic Theses and Dissertations

Biologics, including the monoclonal antibody (mAb), has experienced rapid development in the last decade. However, the price of biologics is often prohibitively high because of the low process efficiency. Delaying the inevitable cell death improves the productivity of upstream bioprocessing, whose success relies on monitoring the cell death onset that indicates the timing for preventive actions.

This study proposes to develop a real-time monitoring model that quantifies the dying cell percentage in lab-scale bioreactors using capacitance spectroscopy. The capacitance spectroscopy contains cell death-related information due to various physical properties changes during the cell death process, e.g., cytoplasmic conductivity change. The …


Development Of Polymeric Cxcr4 Targeting Carriers For Sirna Delivery To Treat Acute Kidney Injury, Weimin Tang Dec 2021

Development Of Polymeric Cxcr4 Targeting Carriers For Sirna Delivery To Treat Acute Kidney Injury, Weimin Tang

Theses & Dissertations

Acute kidney injury (AKI) is a major kidney disease that is characterized by a sudden loss of renal function which manifests by a decrease in urine output and an increase in serum creatinine. AKI is a global healthcare burden associated with high morbidity, mortality, and increasing cost. Currently there are no effective pharmacological treatments available. Apoptosis induced by p53 has been demonstrated as an important pathological mechanism for the development of AKI. Meanwhile, CXCR4/SDF-1 axis has been associated with the inflammation during AKI, and CXCR4 is overexpressed on injured tubules. This dissertation hypothesized that polycations with CXCR4 targeting ability could …


Toward Lignin Valorization: Development Of Rhodococcus Opacus Pd630 As A Chassis For Triacylglycerol (Tag) Production From Recalcitrant Aromatic Feedstocks, Rhiannon R. Carr Dec 2021

Toward Lignin Valorization: Development Of Rhodococcus Opacus Pd630 As A Chassis For Triacylglycerol (Tag) Production From Recalcitrant Aromatic Feedstocks, Rhiannon R. Carr

McKelvey School of Engineering Theses & Dissertations

The advent of the industrial era was precipitated by the discovery of fossil fuels, and ushered in unprecedented changes for humanity included but not limited to the development of rapid transit and communications, improvements to food distribution and preservation, the mass production of goods, and a radical rearrangement of communities from relatively small enclaves to metropolises. With all the benefits, however, come considerable costs, especially to the global environment. Greenhouse gas emissions, built up over centuries of unregulated combustion, have precipitated a rate of global temperature change unparalleled in the 4.5 billion-year history of this planet. In order to preserve …


Phenolic, Carotenoid And Saccharide Compositions Of Vietnamese Camellia Sinensis Teas And Herbal Teas, Danh C. Vu, Sophie Alvarez Oct 2021

Phenolic, Carotenoid And Saccharide Compositions Of Vietnamese Camellia Sinensis Teas And Herbal Teas, Danh C. Vu, Sophie Alvarez

Nebraska Center for Biotechnology: Faculty and Staff Publications

Tea (Camellia sinensis) and herbal tea have been recognized as rich sources of bioactive constituents with the ability to exert antioxidant actions. The aims of this study were to analyze phenolic, carotenoid and saccharide contents in a set of Vietnamese tea and herbal tea and compare the results with those of green and black teas marketed in the U.S. In total, 27 phenolics, six carotenoids and chlorophylls, and three saccharides were quantitatively identified. Catechins, quercetin glycosides and chlorogenic acid were the predominating phenolics in the teas, with the concentrations following the order: jasmine/green teas > oolong tea > black tea. …


Creating Reel Designs: Reflecting On Arthrogryposis Multiplex Congenita In The Community, Iris Layadi Oct 2021

Creating Reel Designs: Reflecting On Arthrogryposis Multiplex Congenita In The Community, Iris Layadi

Purdue Journal of Service-Learning and International Engagement

Because of its extreme rarity, the genetic disease arthrogryposis multiplex congenita (AMC) and the needs of individuals with the diagnosis are often overlooked. AMC refers to the development of nonprogressive contractures in disparate areas of the body and is characterized by decreased flexibility in joints, muscle atrophy, and developmental delays. Colton Darst, a seven-year-old boy from Indianapolis, Indiana, was born with the disorder, and since then, he has undergone numerous surgical interventions and continues to receive orthopedic therapy to reduce his physical limitations. His parents, Michael and Amber Darst, have hopes for him to regain his limbic motion and are …


Defining The Innate Immune Responses For Sars-Cov-2-Human Macrophage Interactions, Mai M. Abdelmoaty, Pravin Yeapuri, Jatin Machhi, Katherine E. Olson, Farah Shahjin, Vikas Kumar, You Zhou, Jingjing Liang, Kabita Pandey, Arpan Acharya, Siddappa N. Byrareddy, R. Lee Mosley, Howard E. Gendelman Oct 2021

Defining The Innate Immune Responses For Sars-Cov-2-Human Macrophage Interactions, Mai M. Abdelmoaty, Pravin Yeapuri, Jatin Machhi, Katherine E. Olson, Farah Shahjin, Vikas Kumar, You Zhou, Jingjing Liang, Kabita Pandey, Arpan Acharya, Siddappa N. Byrareddy, R. Lee Mosley, Howard E. Gendelman

Nebraska Center for Biotechnology: Faculty and Staff Publications

Host innate immune response follows severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and it is the driver of the acute respiratory distress syndrome (ARDS) amongst other inflammatory end-organ morbidities. Such life-threatening coronavirus disease 2019 (COVID-19) is heralded by virus-induced activation of mononuclear phagocytes (MPs; monocytes, macrophages, and dendritic cells). MPs play substantial roles in aberrant immune secretory activities affecting profound systemic inflammation and end-organ malfunctions. All follow the presence of persistent viral components and virions without evidence of viral replication. To elucidate SARS-CoV- 2-MP interactions we investigated transcriptomic and proteomic profiles of human monocyte-derived macrophages. While expression of the …


Tools And Strategies For The Patterning Of Bioactive Molecules And Macromolecules, Daniel J. Valles Sep 2021

Tools And Strategies For The Patterning Of Bioactive Molecules And Macromolecules, Daniel J. Valles

Dissertations, Theses, and Capstone Projects

Hypersurface Photolithography (HP) is a printing method for fabricating structures and patterns composed of soft materials bound to solid surfaces and with ~1 micrometer resolution in the x, y, and z dimensions. This platform leverages benign, low intensity light to perform photochemical surface reactions with spatial and temporal control of irradiation, and, as a result, is particularly useful for patterning delicate organic and biological material. In particular, surface- initiated controlled radical polymerizations can be leveraged to create arbitrary polymer and block- copolymer brush patterns. Chapter 1 will review the advances in instrumentation architectures from our group that have made these …


Somatic Inhibition By Microscopic Magnetic Stimulation, Hui Ye Jun 2021

Somatic Inhibition By Microscopic Magnetic Stimulation, Hui Ye

Biology: Faculty Publications and Other Works

Electric currents can produce quick, reversible control of neural activity. Externally applied electric currents have been used in inhibiting certain ganglion cells in clinical practices. Via electromagnetic induction, a miniature-sized magnetic coil could provide focal stimulation to the ganglion neurons. Here we report that high-frequency stimulation with the miniature coil could reversibly block ganglion cell activity in marine mollusk Aplysia californica, regardless the firing frequency of the neurons, or concentration of potassium ions around the ganglion neurons. Presence of the ganglion sheath has minimal impact on the inhibitory effects of the coil. The inhibitory effect was local to the …


Modeling The Effect Of Igg Subclasses And Specificity In The Translocation Of Monoclonal Antibodies Across The Placental Barrier, Sayuri Tais Miyamoto Magnabosco Jun 2021

Modeling The Effect Of Igg Subclasses And Specificity In The Translocation Of Monoclonal Antibodies Across The Placental Barrier, Sayuri Tais Miyamoto Magnabosco

ENGS 88 Honors Thesis (AB Students)

Infections are responsible for over half a million neonatal deaths every year (Lawn et al., 2014). Thus, there is huge interest in leveraging maternal immunization against infectious diseases to grant fetal protection during its development through the vertical transferring of IgG antibodies, the only Ig subclass that can significantly cross the placental barrier. Studies about vertical immunization rely on in-vitro models to extrapolate physiological conditions of the human placenta. The BeWo Transwell model (Bode et al., 2006) presents itself as a reliable model to mimic the transplacental transport mechanism of antibodies (Ellinger et al., 1999; Poulsen et al., 2009) …