Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Bioengineering Embryonic Microenvironment For Exploring Stem Cell-Breast Cancer Cell Interactions, Nurazhani Abdul Raof Jan 2012

Bioengineering Embryonic Microenvironment For Exploring Stem Cell-Breast Cancer Cell Interactions, Nurazhani Abdul Raof

Legacy Theses & Dissertations (2009 - 2024)

Embryonic stem (ES) cells and breast cancer cells share similar signaling pathways that allow cells to proliferate and differentiate. However, signaling molecules in cancer cells are misexpressed. Cell microenvironments that consist of many factors such as soluble factors, extracellular matrices, and neighboring cells, play a pivotal role in determining cellular fate. The exposure of ES cell microenvironments to cancer cells may address the missing components in the tumor microenvironment, which could inhibit tumorigenesis or reprogram cancer cells into a less invasive phenotype. In this thesis, in vitro ES cell microenvironments have been engineered three-dimensionally via alginate hydrogel encapsulation and patterned …


Optimization Of Bio-Impedance Sensor For Enhanced Detection And Characterization Of Adherent Cells, Dorielle T. Price Jan 2012

Optimization Of Bio-Impedance Sensor For Enhanced Detection And Characterization Of Adherent Cells, Dorielle T. Price

USF Tampa Graduate Theses and Dissertations

This research focuses on the detection and characterization of cells using

impedance-based techniques to understand the behavior and response of cells to internal/environmental changes. In combination with impedimetric sensing techniques, the biosensors in this work allow rapid, label-free, quantitative measurements and are very sensitive to changes in environment and cell morphology. The biosensor design and measurement setup is optimized to detect and differentiate cancer cells and healthy (normal) cells. The outcome of this work will provide a foundation for enhanced 3-dimensional tumor analysis and characterization; thus creating an avenue for earlier cancer detection and reduced healthcare costs.

The magnitude of …