Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Characterization Of Xylan Utilization And Discovery Of A New Endoxylanase In Thermoanaerobacterium Saccharolyticum Through Targeted Gene Deletions, Kara K. Podkaminer, Adam M. Guss, Heather L. Trajano, David A. Hogsett, Lee R. Lynd Sep 2012

Characterization Of Xylan Utilization And Discovery Of A New Endoxylanase In Thermoanaerobacterium Saccharolyticum Through Targeted Gene Deletions, Kara K. Podkaminer, Adam M. Guss, Heather L. Trajano, David A. Hogsett, Lee R. Lynd

Dartmouth Scholarship

The economical production of fuels and commodity chemicals from lignocellulose requires the utilization of both the cellulose and hemicellulose fractions. Xylanase enzymes allow greater utilization of hemicellulose while also increasing cellulose hydrolysis. Recent metabolic engineering efforts have resulted in a strain of Thermoanaerobacterium saccharolyticum that can convert C5 and C6 sugars, as well as insoluble xylan, into ethanol at high yield. To better understand the process of xylan solubilization in this organism, a series of targeted deletions were constructed in the homoethanologenic T. saccharolyticum strain M0355 to characterize xylan hydrolysis and xylose utilization in this organism. While the deletion of …


Computational Design And Characterization Of A Temperature-Sensitive Plasmid Replicon For Gram Positive Thermophiles, Daniel G. Olson, Lee R. Lynd May 2012

Computational Design And Characterization Of A Temperature-Sensitive Plasmid Replicon For Gram Positive Thermophiles, Daniel G. Olson, Lee R. Lynd

Dartmouth Scholarship

Temperature-sensitive (Ts) plasmids are useful tools for genetic engineering, but there are currently none compatible with the gram positive, thermophilic, obligate anaerobe, Clostridium thermocellum. Traditional mutagenesis techniques yield Ts mutants at a low frequency, and therefore requires the development of high-throughput screening protocols, which are also not available for this organism. Recently there has been progress in the development of computer algorithms which can predict Ts mutations. Most plasmids currently used for genetic modification of C. thermocellum are based on the replicon of plasmid pNW33N, which replicates using the RepB replication protein. To address this problem, we set out …