Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Crystallization Of Community-Acquired Respiratory Distress Syndrome Toxin From Mycoplasma Pneumonia, Olga N. Pakhomova, Alexander B. Taylor, Argentina Becker, Stephen P. Holloway, T. R. Kannan, Joel B. Baseman, P. John Hart Mar 2010

Crystallization Of Community-Acquired Respiratory Distress Syndrome Toxin From Mycoplasma Pneumonia, Olga N. Pakhomova, Alexander B. Taylor, Argentina Becker, Stephen P. Holloway, T. R. Kannan, Joel B. Baseman, P. John Hart

Bioelectrics Publications

Community-acquired respiratory distress syndrome toxin (CARDS TX) is a 591-amino-acid protein with ADP-ribosyltransferase and vacuolating activities that damages the cells lining the respiratory tracts of patients infected with the bacterial pathogen Mycoplasma pneumoniae. Crystals of CARDS TX were grown in space group C2, with unit-cell parameters a = 191.4, b = 107.4, c = 222.1 A, beta = 90.6 degrees. A complete 2.2 A data set was obtained from a single CARDS TX crystal.


Frustrated Drift Of An Anchored Scroll-Wave Filament And The Geodesic Principle, Marcel Wellner, Christian W. Zemlin, Arkady M. Pertsov Jan 2010

Frustrated Drift Of An Anchored Scroll-Wave Filament And The Geodesic Principle, Marcel Wellner, Christian W. Zemlin, Arkady M. Pertsov

Bioelectrics Publications

We investigate anchored scroll-wave filaments in an excitable medium whose diffusivity matrix, including its determinant, is spatially nonuniform. The study is motivated by cardiological applications where scroll-wave behavior in the presence of diffusivity gradients is believed to play an important role in the development of severe arrhythmias. A diffusivity gradient is expected to make the filament drift, unless drift is prevented ("frustrated") by anchoring to localized defects in the propagation medium. The resulting stationary filament is a geodesic curve, as demonstrated here in the case of a nonzero but constant gradient. That is, the diffusivity matrix has a determinant that …


Electroporation-Mediated Delivery Of A Naked Dna Plasmid Expressing Vegf To The Porcine Heart Enhances Protein Expression, W. G. Marshall Jr., B. A. Boone, J. D. Burgos, S. I. Gografe, M. K. Baldwin, M. L. Danielson, M. J. Larson, D. R. Caretto, Y. Cruz, B. Ferraro, L. C. Heller, K. E. Ugen, M. J. Jaroszeski, R. Heller Jan 2010

Electroporation-Mediated Delivery Of A Naked Dna Plasmid Expressing Vegf To The Porcine Heart Enhances Protein Expression, W. G. Marshall Jr., B. A. Boone, J. D. Burgos, S. I. Gografe, M. K. Baldwin, M. L. Danielson, M. J. Larson, D. R. Caretto, Y. Cruz, B. Ferraro, L. C. Heller, K. E. Ugen, M. J. Jaroszeski, R. Heller

Bioelectrics Publications

Gene therapy is an attractive method for the treatment of cardiovascular disease. However, using current strategies, induction of gene expression at therapeutic levels is often inefficient. In this study, we show a novel electroporation (EP) method to enhance the delivery of a plasmid expressing an angiogenic growth factor (vascular endothelial growth factor, VEGF), which is a molecule previously documented to stimulate revascularization in coronary artery disease. DNA expression plasmids were delivered in vivo to the porcine heart with or without coadministered EP to determine the potential effect of electrically mediated delivery. The results showed that plasmid delivery through EP significantly …