Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biomedical Engineering and Bioengineering

Dielectrophoretic Separation Of Mouse Melanoma Clones, Ahmet C. Sabuncu, Jie A. Liu, Stephen J. Beebe, Ali Beskok Jun 2010

Dielectrophoretic Separation Of Mouse Melanoma Clones, Ahmet C. Sabuncu, Jie A. Liu, Stephen J. Beebe, Ali Beskok

Bioelectrics Publications

Dielectrophoresis (DEP) is employed to differentiate clones of mouse melanoma B16F10 cells. Five clones were tested on microelectrodes. At a specific excitation frequency, clone 1 showed a different DEP response than the other four. Growth rate, melanin content, recovery from cryopreservation, and in vitro invasive studies were performed. Clone 1 is shown to have significantly different melanin content and recovery rate from cryopreservation. This paper reports the ability of DEP to differentiate between two malignant cells of the same origin. Different DEP responses of the two clones could be linked to their melanin content.


Crystallization Of Community-Acquired Respiratory Distress Syndrome Toxin From Mycoplasma Pneumonia, Olga N. Pakhomova, Alexander B. Taylor, Argentina Becker, Stephen P. Holloway, T. R. Kannan, Joel B. Baseman, P. John Hart Mar 2010

Crystallization Of Community-Acquired Respiratory Distress Syndrome Toxin From Mycoplasma Pneumonia, Olga N. Pakhomova, Alexander B. Taylor, Argentina Becker, Stephen P. Holloway, T. R. Kannan, Joel B. Baseman, P. John Hart

Bioelectrics Publications

Community-acquired respiratory distress syndrome toxin (CARDS TX) is a 591-amino-acid protein with ADP-ribosyltransferase and vacuolating activities that damages the cells lining the respiratory tracts of patients infected with the bacterial pathogen Mycoplasma pneumoniae. Crystals of CARDS TX were grown in space group C2, with unit-cell parameters a = 191.4, b = 107.4, c = 222.1 A, beta = 90.6 degrees. A complete 2.2 A data set was obtained from a single CARDS TX crystal.


Electrically Mediated Delivery Of Plasmid Dna To The Skin, Using A Multielectrode Array, Richard Heller, Yolmari Criz, Loree C. Heller, Richard A. Gilbert, Mark J. Jaroszeski Mar 2010

Electrically Mediated Delivery Of Plasmid Dna To The Skin, Using A Multielectrode Array, Richard Heller, Yolmari Criz, Loree C. Heller, Richard A. Gilbert, Mark J. Jaroszeski

Bioelectrics Publications

The easy accessibility of skin makes it an excellent target for gene transfer protocols. To take full advantage of skin as a target for gene transfer, it is important to establish an efficient and reproducible delivery system. Electroporation is a strong candidate to meet this delivery criterion. Electroporation of the skin is a simple, direct, in vivo method to deliver genes for therapy. Previously, delivery to the skin was performed by means of applicators with relatively large distances between electrodes, resulting in significant muscle stimulation and pain. These applicators also had limitations in controlling the directionality of the applied field ...


Bioelectric Applications For Treatment Of Melanoma, Stephen J. Beebe, Karl H. Schoenbach, Richard Heller Jan 2010

Bioelectric Applications For Treatment Of Melanoma, Stephen J. Beebe, Karl H. Schoenbach, Richard Heller

Bioelectrics Publications

Two new cancer therapies apply bioelectric principles. These methods target tumor structures locally and function by applying millisecond electric fields to deliver plasmid DNA encoding cytokines using electrogene transfer (EGT) or by applying rapid rise-time nanosecond pulsed electric fields (nsPEFs). EGT has been used to locally deliver cytokines such as IL-12 to activate an immune response, resulting in bystander effects. NsPEFs locally induce apoptosis-like effects and affect vascular networks, both promoting tumor demise and restoration of normal vascular homeostasis. EGT with IL-12 is in melanoma clinical trials and nsPEFs are used in models with B16F10 melanoma in vitro and in ...


Electroporation-Mediated Delivery Of A Naked Dna Plasmid Expressing Vegf To The Porcine Heart Enhances Protein Expression, W. G. Marshall Jr., B. A. Boone, J. D. Burgos, S. I. Gografe, M. K. Baldwin, M. L. Danielson, M. J. Larson, D. R. Caretto, Y. Cruz, B. Ferraro, L. C. Heller, K. E. Ugen, M. J. Jaroszeski, R. Heller Jan 2010

Electroporation-Mediated Delivery Of A Naked Dna Plasmid Expressing Vegf To The Porcine Heart Enhances Protein Expression, W. G. Marshall Jr., B. A. Boone, J. D. Burgos, S. I. Gografe, M. K. Baldwin, M. L. Danielson, M. J. Larson, D. R. Caretto, Y. Cruz, B. Ferraro, L. C. Heller, K. E. Ugen, M. J. Jaroszeski, R. Heller

Bioelectrics Publications

Gene therapy is an attractive method for the treatment of cardiovascular disease. However, using current strategies, induction of gene expression at therapeutic levels is often inefficient. In this study, we show a novel electroporation (EP) method to enhance the delivery of a plasmid expressing an angiogenic growth factor (vascular endothelial growth factor, VEGF), which is a molecule previously documented to stimulate revascularization in coronary artery disease. DNA expression plasmids were delivered in vivo to the porcine heart with or without coadministered EP to determine the potential effect of electrically mediated delivery. The results showed that plasmid delivery through EP significantly ...


Frustrated Drift Of An Anchored Scroll-Wave Filament And The Geodesic Principle, Marcel Wellner, Christian W. Zemlin, Arkady M. Pertsov Jan 2010

Frustrated Drift Of An Anchored Scroll-Wave Filament And The Geodesic Principle, Marcel Wellner, Christian W. Zemlin, Arkady M. Pertsov

Bioelectrics Publications

We investigate anchored scroll-wave filaments in an excitable medium whose diffusivity matrix, including its determinant, is spatially nonuniform. The study is motivated by cardiological applications where scroll-wave behavior in the presence of diffusivity gradients is believed to play an important role in the development of severe arrhythmias. A diffusivity gradient is expected to make the filament drift, unless drift is prevented ("frustrated") by anchoring to localized defects in the propagation medium. The resulting stationary filament is a geodesic curve, as demonstrated here in the case of a nonzero but constant gradient. That is, the diffusivity matrix has a determinant that ...