Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Scanning Local‐Acceleration Microscopy, Nancy Burnham, A. Kulik, G. Gremaud, P. Gallo, F. Oulevey Feb 1996

Scanning Local‐Acceleration Microscopy, Nancy Burnham, A. Kulik, G. Gremaud, P. Gallo, F. Oulevey

Nancy A. Burnham

By adapting a scanning force microscope to operate at frequencies above the highest tip–sample resonance, the sensitivity of the microscope to materials’ properties is greatly enhanced. The cantilever’s behavior in response to high‐frequency excitation from a transducer underneath the sample is fundamentally different than to its low‐frequency response. In this article, the motivations, instrumentation, theory, and first results for this technique are described.


Materials’ Properties Measurements: Choosing The Optimal Scanning Probe Microscope Configuration, Nancy Burnham, G Gremaud, A Kulik, P Gallo, F Oulevey Feb 1996

Materials’ Properties Measurements: Choosing The Optimal Scanning Probe Microscope Configuration, Nancy Burnham, G Gremaud, A Kulik, P Gallo, F Oulevey

Nancy A. Burnham

Rheological models are used to represent different scanning probe microscope configurations. The solutions for their static and dynamic behavior are found and used to analyze which scanning probe microscope configuration is best for a given application. We find that modulating the sample at high frequencies results in the best microscope behavior for measuring the stiffness of rigid materials, and that by modulating the tip at low frequencies and detecting the motion of the tip itself (not its position relative to the tip holder) should be best for studying compliant materials in liquids.