Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Biomedical Engineering and Bioengineering

Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb Jun 2024

Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb

Theses and Dissertations

Implantable drug delivery devices have many benefits over traditional drug administration techniques and have attracted a lot of attention in recent years. By delivering the medication directly to the tissue, they enable the use of larger localized concentrations, enhancing the efficacy of the treatment. Passive-release drug delivery systems, one of the various ways to provide medication, are great inventions. However, they cannot dispense the medication on demand since they are nonprogrammable. Therefore, active actuators are more advantageous in delivery applications. Smart material actuators, however, have greatly increased in popularity for manufacturing wearable and implantable micropumps due to their high energy …


A Rapid And Ultra-Sensitive Biosensing Platform Based On Tunable Dielectrophoresis For Robust Poc Applications, Yu Jiang Aug 2022

A Rapid And Ultra-Sensitive Biosensing Platform Based On Tunable Dielectrophoresis For Robust Poc Applications, Yu Jiang

Doctoral Dissertations

With the ongoing pandemic, there have been increasing concerns recently regarding major public health issues such as abuse of organophosphorus compounds, pathogenic bacterial infections, and biosecurity in agricultural production. Biosensors have long been considered a kernel technology for next-generation diagnostic solutions to improve food safety and public health. Significant amounts of effort have been devoted to inventing novel sensing mechanisms, modifying their designs, improving their performance, and extending their application scopes. However, the reliability and selectivity of most biosensors still have much to be desired, which holds back the development and commercialization of biosensors, especially for on-site and point-of-care (POC) …


Development Of A Pneumatically Controllable Microdroplet Generator With Electrical Sensing, Gnanesh Nagesh Jul 2021

Development Of A Pneumatically Controllable Microdroplet Generator With Electrical Sensing, Gnanesh Nagesh

Electronic Theses and Dissertations

Microfluidic droplet generation is popular in lab-on-a-chip based biochemical analysis because it can provide precise and high throughput fluids in the form of small droplets. This thesis presents a T-junction microdroplet generator with pneumatic actuation for regulating droplet size and a capacitance-based sensor with real-time sensing capability for characterizing droplet composition and size. The multi-layer device developed in this thesis is compatible with rapid manufacturing using a desktop-based laser cutter to fabricate the fluidic and pneumatic layers. A finite element based numerical model was developed to predict the best operating and geometric parameters for droplet generation. It was revealed that …


Microfluidic Electrical Impedance Spectroscopy, John J. Foley Sep 2018

Microfluidic Electrical Impedance Spectroscopy, John J. Foley

Master's Theses

The goal of this study is to design and manufacture a microfluidic device capable of measuring changes in impedance valuesof microfluidic cell cultures. Tocharacterize this, an interdigitated array of electrodes was patterned over glass, where it was then bonded to a series of fluidic networks created in PDMS via soft lithography. The device measured ethanol impedance initially to show that values remain consistent over time. Impedance values of water and 1% wt. saltwater were compared to show that the device is able to detect changes in impedance, with up to a 60% reduction in electrical impedance in saltwater. Cells were …


Poly Drop, Zachary T. Scott, Lilly J. Paul Jun 2017

Poly Drop, Zachary T. Scott, Lilly J. Paul

Computer Engineering

Poly Drop is a software interface to control an Open Drop digital micro-fluidics system. We obtained a hardware system from Gaudi labs. Our task was to create a Graphical User Interface that made the control of the device easier and more automated for better testing. We created software that had 3 parts: a control GUI, arduino code to control the hardware, and Image Analysis that gives the user information such as location and color of liquid drops as they move across the electrode grid of the Open Drop system. The GUI was developed using Java Swing. The communication between the …


Concurrent Detection And Isolation Of Cellular And Molecular Biomarkers, Wanfeng Huang Dec 2016

Concurrent Detection And Isolation Of Cellular And Molecular Biomarkers, Wanfeng Huang

Open Access Dissertations

Detection of cancer markers such as protein biomolecules and cancer cells in bodily fluids is of great importance in early diagnosis, prognosis as well as evaluation of therapy efficacy. Numerous devices have been developed for detecting either cellular or molecular targets, however there has not yet been a system that can simultaneously detect both cellular and molecular targets effectively. Molecule and cell-based assays are important because each type of target can tell a different story about the state of the disease and the two types of information can potentially be combined and/or compared for more accurate biological or clinical assessments. …


A Multi-Channel 3d-Printed Bioreactor For Evaluation Of Growth And Production In The Microalga Dunaliella Sp, Cristian A. Cox Dec 2016

A Multi-Channel 3d-Printed Bioreactor For Evaluation Of Growth And Production In The Microalga Dunaliella Sp, Cristian A. Cox

Electronic Theses and Dissertations

We explored the capabilities of additive manufacturing using a photo-cured jetted material 3D printer to manufacture a milli-microfluidic device with direct application in microalgae Dunaliella sp growth and intracellular compounds biosynthesis tests. A continuous microbioreactor for microalgae culture was CAD designed and successfully built in 1 hour and 49 minutes using black photopolymer cured by UV and a support material. The microreactor was made up of 2 parts including the bioreactor itself and a microchannel network for culture media fluids and microalgae. Both parts were assembled to form a single unit. Additional optical and auxiliar components were added. An external …


Point Of Care Diagnostics And Health Monitoring Devices, Akshaya Shanmugam Mar 2016

Point Of Care Diagnostics And Health Monitoring Devices, Akshaya Shanmugam

Doctoral Dissertations

Existing disease screening methods mostly rely on symptom based diagnosis. This is mainly because of lack of accessibility and cost associated with the tests. Testing for the presence of the disease after the onset of symptoms has a negative impact on chances of survival and treatment costs. Miniaturized low cost diagnostic devices that can be used outside the hospital setting can provide continuous health monitoring and aid in early diagnosis. This thesis presents techniques to develop such disease screening and health monitoring devices. The techniques presented here focus on medical devices that can benefit from microfluidic devices, fluorescence imaging, and …


Optimization Of Bio-Impedance Sensor For Enhanced Detection And Characterization Of Adherent Cells, Dorielle T. Price Jan 2012

Optimization Of Bio-Impedance Sensor For Enhanced Detection And Characterization Of Adherent Cells, Dorielle T. Price

USF Tampa Graduate Theses and Dissertations

This research focuses on the detection and characterization of cells using

impedance-based techniques to understand the behavior and response of cells to internal/environmental changes. In combination with impedimetric sensing techniques, the biosensors in this work allow rapid, label-free, quantitative measurements and are very sensitive to changes in environment and cell morphology. The biosensor design and measurement setup is optimized to detect and differentiate cancer cells and healthy (normal) cells. The outcome of this work will provide a foundation for enhanced 3-dimensional tumor analysis and characterization; thus creating an avenue for earlier cancer detection and reduced healthcare costs.

The magnitude of …


Biological Cell Identification By Integrating Micro-Fluidics, Electrical Impedance Spectroscopy And Stochastic Estimation, Karl R. Schwenn Mar 2007

Biological Cell Identification By Integrating Micro-Fluidics, Electrical Impedance Spectroscopy And Stochastic Estimation, Karl R. Schwenn

Theses and Dissertations

The integration of micro-fluidics, electrical impedance spectroscopy and stochastic estimation will lead to a device with enhanced detection capabilities. The goal of this thesis was to build a micro-fluidic electrical impedance measurement device that can be used in combination with a stochastic estimator to accurately identify living cells. A microdevice capable of making impedance measurements on individual living cells was designed and built using a series of standard microelectronic fabrication techniques. A microchannel was patterned in SU-8 photoresist between two gold microelectrodes on a two inch Pyrex 7740 wafer. The design process, the fabrication techniques for the microchannel, the fluid …