Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Biomedical Engineering and Bioengineering

Simulation Of Fracture Strength Improvements Of A Human Proximal Femur Using Finite Element Analysis., Waleed Ebraheem Alim May 2021

Simulation Of Fracture Strength Improvements Of A Human Proximal Femur Using Finite Element Analysis., Waleed Ebraheem Alim

Electronic Theses and Dissertations

The most common hip fracture in the elderly occurs as a result of a fall to the side with impact over the greater trochanter resulting in a fracture of the proximal femur. The fracture usually involves the femoral neck or the intertrochanteric region. It has recently been determined that the fracture crack of a hip fracture typically initiates on the superior-lateral cortex of the femoral neck and then propagates across the femoral neck, resulting in a complete fracture. The strength of the superior-lateral cortex of the femoral neck is likely determined by the combined properties of the generally thin cortex …


Subject-Specific Finite Element Models Of The Human Knee For Transtibial Amputees To Analyze Tibial Cartilage Pressure For Gait, Cycling, And Elliptical Training, Jonathon Stearns Mar 2020

Subject-Specific Finite Element Models Of The Human Knee For Transtibial Amputees To Analyze Tibial Cartilage Pressure For Gait, Cycling, And Elliptical Training, Jonathon Stearns

Master's Theses

It is estimated that approximately 10-12% of the adult population suffers from osteoarthritis (OA), with long reaching burdens personally and socioeconomically. OA also causes mild discomfort to severe pain in those suffering from the disease. The incidence rate of OA for individuals with transtibial amputations is much than average in the tibiofemoral joint (TF). It is well understood that abnormal articular cartilage stress, whether that be magnitude or location, increases the risk of developing OA. Finite element (FE) simulations can predict stress in the TF joint, many studies throughout the years have validated the technology used for this purpose. This …


Single-Cell Impedance Spectroscopy, David Paul Lange Dec 2019

Single-Cell Impedance Spectroscopy, David Paul Lange

Master's Theses

Impedance spectroscopy (IS) is an important tool for cell detection and characterization in medical and food safety applications. In this thesis, the Cal Poly Biofluidics Lab’s impedance spectroscopy system was re-evaluated and optimized for single-cell impedance spectroscopy. To evaluate the IS system, an impedance spectroscopy bioMEMS chip was fabricated in the Cal Poly Microfabcrication lab, software was developed to run IS experiments, and studies were run to validate the system. To explore IS optimization, Maxwell’s mixture theorem and the Schwartz-Christoffel transform were used to calculate an analytic impedance solution to the co-planar electrode system,a novel volume fraction to account for …


Computational Simulation Of A Femoral Nail Fracture, Stephen Charles Whatley Jan 2019

Computational Simulation Of A Femoral Nail Fracture, Stephen Charles Whatley

Browse all Theses and Dissertations

Every year in the United States roughly 300,000 people over the age of 65 suffer from a hip fracture. Ninety five percent of which are the result from a fall. The resulting hip fracture can be classified into several categories of fracture. Depending on the damage the patient could be implanted with a femoral nail device to assist in their recovery. These devices can, however, have complications during recovery. In some cases, these nails can have a failure rate as high as 10%. When failure occurs, extensive investigations are needed to determine the causes of failure. These investigations involve physical …


A Finite Element Analysis On The Viscoelasticity Of Postmenopausal Compact Bone Utilizing A Complex Collagen D-Spacing Model, Austin C. Cummings Jun 2015

A Finite Element Analysis On The Viscoelasticity Of Postmenopausal Compact Bone Utilizing A Complex Collagen D-Spacing Model, Austin C. Cummings

Master's Theses

The nanoscale dimension known as D-spacing describes the staggering of collagen molecules, which are fundamental to the biphasic makeup of bone tissue. This dimension was long assumed to be constant, but recent studies have shown that the periodicity of collagen is variable. Given that the arrangement of collagen molecules is closely related to the degree of bone mineralization, recent studies have begun to look at D-spacing as a potential factor in the ongoing effort to battle postmenopausal osteoporosis. The theoretical models presented by previous studies have only opted to model a single collagen-hydroxyapatite period, so the creation of an intricate …


The Effect Of Artery Bifurcation Angles On Fluid Flow And Wall Shear Stress In The Middle Cerebral Artery, Zachary Ramey Jones Dec 2014

The Effect Of Artery Bifurcation Angles On Fluid Flow And Wall Shear Stress In The Middle Cerebral Artery, Zachary Ramey Jones

Master's Theses

Saccular aneurysms are the abnormal plastic deformation of veins and arteries that can lead to lethal thrombus genesis or internal hemorrhaging. Medication and surgery greatly reduce the mortality rates, but treatment is limited by predicting who will develop aneurysms. A common location for saccular aneurysm genesis is at the main middle cerebral artery (MCA) bifurcation. The main MCA bifurcation is comprised of the M1 MCA segment, parent artery, and two M2 segments, daughter arteries. Studies have found that the lateral angle (LA) ratio of the MCA bifurcation is correlated with aneurysm formation. The LA ratio is defined as the angle …


Modeling The Zimmer Fitmore And Ml Taper Implantation, Tyler Kazuo Franklin May 2013

Modeling The Zimmer Fitmore And Ml Taper Implantation, Tyler Kazuo Franklin

Master's Theses

With more young adults requiring total hip

arthroplasties the need for bone saving implants becomes

more important. The Zimmer Fitmore is a new bone saving

implant that utilizes an implantation technique that

reduces the damage to the muscle tissue allowing for

patients to have a short recovery time as well as a new

design that allows it to rest on the medial cortex. There

has been anecdotal evidence that this device leads to early

revision within six months of implantation due to failures

occurring in the medial cortex. The main goal of this

study was to computationally model the Zimmer …


Explicit Finite Element Modeling Of The Human Lumbar Spine, Milind Rao Jan 2012

Explicit Finite Element Modeling Of The Human Lumbar Spine, Milind Rao

Electronic Theses and Dissertations

Validated finite element (FE) models of the functional spinal unit (FSU) and lumbar spine are essential in design-phase device development and in assessing the mechanics associated with normal spine function and degenerative disc disease (DDD), as well as the impact of fusion and total disc replacement (TDR). Although experimental data from fully intact specimens can be used for model calibration and validation, the contributions from the individual structures (disc, facets, and ligaments) may be inappropriately distributed. Hence, creation of decompression conditions or device implantations that require structure removal may not have the proper resulting mechanics. An explicit FE formulation may …


The Development And Validation Of A Finite Element Model Of A Canine Rib For Use With A Bone Remodeling Algorithm., Scott J. Sylliaasen Dec 2010

The Development And Validation Of A Finite Element Model Of A Canine Rib For Use With A Bone Remodeling Algorithm., Scott J. Sylliaasen

Master's Theses

Studies are currently being performed to determine the effects of bisphosphonate treatments on the structure and density of bone tissue. One of the pathways for gaining a better understanding of the effects of this and other treatments involves creating a computer simulation. Theory suggests that bone tissue structure and density are directly related to the manner in which the tissue is loaded. Remodeling is the process in which bone tissue is resorbed in areas of low stress distributions, and generated in areas of high stress distributions. Previous studies have utilized numerical methods and finite element methods to predict bone structure …