Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Imaging Techniques For Proton Range Determination In Proton Therapy, Xinyuan Chen Aug 2022

Imaging Techniques For Proton Range Determination In Proton Therapy, Xinyuan Chen

McKelvey School of Engineering Theses & Dissertations

Proton therapy can achieve better sparing of normal tissues than the conventional photon radiation therapy due to proton’s Bragg Peak property. However, to unlock the full potential of protons, accurate prediction of in vivo proton stopping power ratio (SPR) is required for proton therapy treatment planning. The current standard practice is to map SPR from Hounsfield Unit (HU) values of a single-energy computed tomography (SECT) scan through a stoichiometric calibration technique. This technique is subjected to a variety of factors that congregate on the uncertainties in SPR estimation, including the calibration uncertainty (up to 0.5% to 1.8% of the total …


Basis Vector Model Method For Proton Stopping Power Estimation Using Dual-Energy Computed Tomography, Shuangyue Zhang Dec 2018

Basis Vector Model Method For Proton Stopping Power Estimation Using Dual-Energy Computed Tomography, Shuangyue Zhang

McKelvey School of Engineering Theses & Dissertations

Accurate estimation of the proton stopping power ratio (SPR) is important for treatment planning and dose prediction for proton beam therapy. The state-of-the-art clinical practice for estimating patient-specific SPR distributions is the stoichiometric calibration method using single-energy computed tomography (SECT) images, which in principle may introduce large intrinsic uncertainties into estimation results. One major factor that limits the performance of SECT-based methods is the Hounsfield unit (HU) degeneracy in the presence of tissue composition variations. Dual-energy computed tomography (DECT) has shown the potential of reducing uncertainties in proton SPR prediction via scanning the patient with two different source energy spectra. …


Application Of Dual-Energy Computed Tomography To The Evalution Of Coronary Atherosclerotic Plaque, Mitya M. Barreto Jan 2009

Application Of Dual-Energy Computed Tomography To The Evalution Of Coronary Atherosclerotic Plaque, Mitya M. Barreto

ETD Archive

Atherosclerotic coronary artery disease is responsible for around 50 of cardiovascular deaths in USA. Early detection and characterization of coronary artery atherosclerotic plaque could help prevent cardiac events. Computed tomography (CT) is an excellent modality for imaging calcifications and has higher spatial resolution than other common non-invasive modalities (e.g MRI), making it more suitable for coronary plaque detection. However, attenuation-based classification of non-calcified plaques as fibrous or lipid is difficult with conventional CT, which relies on a single x-ray energy. Dual-energy CT (DECT) may provide additional attenuation data for the identification and discrimination of plaque components. The purpose of this …