Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Synthesis And Characterization Of Novel Temperature-Responsive Dendritic Peg-Pdlla Star Polymers For Drug Delivery, Arunvel Kailasan Nov 2008

Synthesis And Characterization Of Novel Temperature-Responsive Dendritic Peg-Pdlla Star Polymers For Drug Delivery, Arunvel Kailasan

Theses and Dissertations

This study describes a novel thermoresponsive dendritic polyethylene glycol-poly(D, L-lactide) (PEG-PDLLA) core-shell nanoparticle with potential for drug delivery and controlled release. A series of dendritic PEG-PDLLA nanoparticles were synthesized through conjugation of PEG to Starburst™ polyamidoamine (PAMAM) dendrimer G3.0 and subsequent ring-opening polymerization of DLLA, in which PEG chain length (i.e., MW=1500, 6000 or 12000 Dalton) was varied; however, the feeding molar ratio of DLLA monomers to the overall PEG repeat units on the dendrimer surface was kept at 1:1. Linear PEG-PDLLA copolymers were also syntheiszed under the same condition and used as control. According to our results, dendritic PEG-PDLLA …


Nanoengineered Templates For Controlled Delivery Of Bioactive Compounds, Nalinkanth Ghone Veerabadran Jul 2008

Nanoengineered Templates For Controlled Delivery Of Bioactive Compounds, Nalinkanth Ghone Veerabadran

Doctoral Dissertations

The significance of any drugs, therapeutic proteins, or any bioactive compounds, is based not only on their effects on diseases but also on how specifically, how readily, how controllable and how prolonged their effects on the disease without having any side effects. Thus the techniques involved in the drug encapsulation and its controlled release for a longer duration of time form one of the important processes of drug reformulation. In recent years nanoparticles have created overwhelming attention for delivering drugs by nanoencapsulation. The smaller size of nanoparticles has longer circulation time and higher cellular uptake when compared with larger size …