Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biomedical Engineering and Bioengineering

Fabrication And Modification Of Titania Nanotube Arrays For Harvesting Solar Energy And Drug Delivery Applications, Ahmed El Ruby Abdel Rahman Mohamed Dec 2017

Fabrication And Modification Of Titania Nanotube Arrays For Harvesting Solar Energy And Drug Delivery Applications, Ahmed El Ruby Abdel Rahman Mohamed

Electronic Thesis and Dissertation Repository

The fast diminishing of fossil fuels in the near future, as well as the global warming caused by increasing greenhouse gases have motivated the urgent quest to develop advanced materials as cost-effective photoanodes for solar light harvesting and many other photocatalytic applications. Recently, titania nanotube arrays (TNTAs) fabricated by anodization process has attracted great interest due to their excellent properties such as: high surface area, vertically oriented, highly organized, one-dimensional, nanotubular structure, photoactivity, chemical stability and biocompatibility. This unique combination of excellent properties makes TNTAs an excellent photoanode for solar light harvesting. However, the relatively wide band gap energy of ...


The Design, Fabrication, And Characterization Of Nanoparticle-Protein Interactions For Theranostic Applications, Wai Hei Tse Aug 2017

The Design, Fabrication, And Characterization Of Nanoparticle-Protein Interactions For Theranostic Applications, Wai Hei Tse

Electronic Thesis and Dissertation Repository

Theranostics, a combination of therapeutics and diagnostics, spans a spectrum of research areas to provide new opportunities in developing new healthcare technologies and medicine at affordable prices. Through employing a personalized medicine approach, biotechnology can be tailored to the needs of an individual. Applications of theranostics include drug delivery carriers capable of sustained drug release and targeted delivery, biosensors with high sensitivity and selectivity, and diagnostic relevant entities that can be incorporated into the former technologies. Nanotechnology provides a suitable foundation for theranostics to build upon due to material-based properties; magnetism, biocompatibility, and quantum effects to name a few. Purpose ...


Poly(Ester Amide) And Poly(Ethyl Glyoxylate) Nanoparticles For Controlled Drug Release, Amira Mohamed Moustafa Dec 2014

Poly(Ester Amide) And Poly(Ethyl Glyoxylate) Nanoparticles For Controlled Drug Release, Amira Mohamed Moustafa

Electronic Thesis and Dissertation Repository

The objective of this research was to develop polymeric nanoparticles (NPs) having improved drug release properties for drug delivery. Poly(ester amide)s (PEAs) are promising biodegradable polymers. PEA NPs were prepared via emulsification-evaporation and salting-out methods and optimized through by varying different processing parameters. Polymer-model drug conjugates based on PEAs containing L-aspartic acid and rhodamine B were synthesized and used for NP preparation. Release behavior was studied and compared to a control system with physically encapsulated rhodamine B. It was shown that the release of rhodamine B from the covalent system did not show the burst effect and exhibited ...


Bioactivity And Cell-Mediated Targeting Of Multistage Nanoporous Silicon Particles, Jonathan O. Martinez May 2014

Bioactivity And Cell-Mediated Targeting Of Multistage Nanoporous Silicon Particles, Jonathan O. Martinez

UT GSBS Dissertations and Theses (Open Access)

Progress in drug delivery approaches have not adequately translated into clinical advances in the diagnosis or treatment of inflammatory disorders (e.g., cancer). This disconnect is rooted in the inefficient delivery of imaging and therapeutic agents to the inflamed site upon systemic delivery. A multitude of biological barriers pose insurmountable obstacles limiting the ability of the agent to effectively reach and accumulate at the target site. Nanoparticles (NP) surfaced as potential vectors to encapsulate and deliver biological agents. However, even after surface decoration, NP have failed to evade biological barriers (i.e., MPS) and to accumulate at the tumor site ...