Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biomedical Engineering and Bioengineering

Nanocellulose Based Foams For Low-Cost Disposable Medical Applications, Dominic Kugell Aug 2023

Nanocellulose Based Foams For Low-Cost Disposable Medical Applications, Dominic Kugell

Electronic Theses and Dissertations

Polyurethane foams have been a staple material for their use in medical positioners, such as post-surgery elevation pillows as well as specific tailored positioners for their use during surgery. Polyurethane foams are preferred because of their lower cost compared to other petroleum derived foams, their versatility, and suitable mechanical properties. However, the environmental impact, including both cost and perception, of these foams is immense. Therefore, alternatives are being explored with biopolymers emerging as a promising class of materials. Cellulose is one such polymer that has recently demonstrated desirable properties. In this study, cellulose nanofibrils (CNF), a household foaming agent, and …


Zein And Lignin-Based Nanoparticles As Delivery Systems: Pesticide Release And Nanoparticle Health Impact On Soybean Plants, Fallon Polette Salinas Gonzalez Jan 2021

Zein And Lignin-Based Nanoparticles As Delivery Systems: Pesticide Release And Nanoparticle Health Impact On Soybean Plants, Fallon Polette Salinas Gonzalez

LSU Doctoral Dissertations

This research examined the effect of biodegradable, polymeric, lignin-based nanoparticles (LNPs, 113.8±3.4, negatively charged) and zein nanoparticles (ZNP, 141.6±3.9, positively charged) on soybean plant health. The LNPs were synthesized from lignin, covalently linked to poly(lactic-co-glycolic) acid by emulsion evaporation. ZNPs were synthesized by nanoprecipitation. Soybeans grown hydroponically were treated with three concentrations (0.02, 0.2, and 2 mg/ml) of NPs at 28 days after germination. The effect of ZNPs and LNPs on plant health was determined through analysis of root and stem length, chlorophyll concentration, dry biomass of roots and stem, as well as carbon, nitrogen, and micronutrient absorption after 1, …


Formulation And Testing Of Biodegradable Polymeric Coating On Zinc Wires In Cardiovascular Stent Application, Avishan Arab Shomali Jan 2017

Formulation And Testing Of Biodegradable Polymeric Coating On Zinc Wires In Cardiovascular Stent Application, Avishan Arab Shomali

Dissertations, Master's Theses and Master's Reports

Biodegradable and biocompatible poly (L-lactic-acid) (PLLA) coating was applied on a modified zinc (Zn) substrate by dip coating, with the intent to delay the bio-corrosion and slow the degradation rate of zinc substrate. 3-(Trimethoxysilyl) propyl methacrylate (MPS) was used for modification of the zinc substrate for promoting the adhesion between the metallic substrate and the polymer coating. It is hypothesized that the delay in Zn biodegradation could be useful in the first several weeks to prevent the early loss of mechanical integrity of the endovascular stent and to improve the healing process of the diseased vascular site. The PLLA coating …


Biodegradable Electronic And Optical Devices Toward Temporary Implants, Md Shihab Adnan Jan 2016

Biodegradable Electronic And Optical Devices Toward Temporary Implants, Md Shihab Adnan

Masters Theses

"Implantable biomedical devices have a high potential to revolutionize health care technologies in near future. Implantable devices can be classified as permanent prosthetic devices such as pacemakers or nerve stimulants and temporary devices for intermediate monitoring and control scenario which are still in research phase. In contrast to permanent device, temporary implants lose functionality and become unnecessary after intended operational lifetime which may pose serious electromagnetic and biomedical safety concern, latent complications at the implanted sites and possible ethical issues if not removed from body by an additional surgical operation.

The first paper of this thesis focuses on exploring the …


Biodegradable Nano-Hybrid Polymer Composite Networks For Regulating Cellular Behavior, Charles Henley Sprague Aug 2015

Biodegradable Nano-Hybrid Polymer Composite Networks For Regulating Cellular Behavior, Charles Henley Sprague

Masters Theses

Photo-crosslinkable polymeric biomaterials have emerged in the field of biomedical research to promote tissue regeneration. For example, scaffolds that can be crosslinked and hardened in situ have been known to make suitable implant alternatives. Since injectable and photo-crosslinkable biomaterials offer the advantage of being minimally invasive, they have emerged to compete with autografts, a current highly invasive method to repair diseased tissue. A series of novel photo-crosslinkable, injectable, and biodegradable nano-hybrid polymers consisting of poly(ε-caprolactone fumarate) (PCLF) and polyhedral oligomeric silsesquioxane (POSS) has been synthesized in our laboratory via polycondensation. To engineer the material properties of the nano-hybrid networks, varied …


Modulation Of Bone And Nerve Cell Behavior Using Biodegradable Polymer Networks, Lei Cai Aug 2012

Modulation Of Bone And Nerve Cell Behavior Using Biodegradable Polymer Networks, Lei Cai

Doctoral Dissertations

This dissertation presents novel biodegradable and photo-crosslinkable building blocks to achieve polymer networks with controlled surface chemistry, stiffness, and topographical features for investigating cell-material interactions and targeting hard and soft tissue engineering applications. Chapter I reviews the recent progress in polymeric gel systems and how their physical properties can be tailored to regulate cell functions and satisfy the clinical needs. Chapter II presents a facile method to synthesize photo-crosslinkable poly(epsilon-caprolactone) acrylates (PCLAs) and reveal tunable cell responses to photo-crosslinked PCLAs. Chapter III investigates the mechanism of colorization in preparing crosslinkable polymers by reacting hydroxyl-containing polymers with unsaturated anhydrides or acyl …