Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biomedical Engineering and Bioengineering

The Efficacy Of Bionate As An Articulating Surface For Joint Hemiarthroplasty, Sarah Dedecker Dec 2016

The Efficacy Of Bionate As An Articulating Surface For Joint Hemiarthroplasty, Sarah Dedecker

Electronic Thesis and Dissertation Repository

Hemiarthroplasty procedures replace the diseased side of the joint with an implant to maximize bone preservation while maintaining more native anatomy than a total joint replacement. Even though hemiarthroplasty procedures have been clinically successful, they cause progressive cartilage damage over time due to the use of relatively stiff metallic implant materials. This work investigates the role of low moduli implant material on implant-cartilage contact mechanics and early in vitro cartilage wear. A finite element simulation was developed to assess the effect of low moduli implants in the range of 0.015-0.288 GPa on contact mechanics. Higher contact area and lower peak …


Enabling Studies To Optimize Biomaterials For The Treatment Of Myocardial Infarction, Eva Adriana Romito Jun 2016

Enabling Studies To Optimize Biomaterials For The Treatment Of Myocardial Infarction, Eva Adriana Romito

Theses and Dissertations

The canonical mechanism of wound healing is disrupted following a myocardial infarction (MI), manifesting as an unregulated response that negatively impacts left ventricular (LV) function. This mechanism, termed post-MI remodeling, culminates in an outcome that favors progression to a systolic heart failure state and death for the patient. Therapeutic approaches following the occurrence of a MI are designed to modulate the natural remodeling process and mitigate the loss of cardiac function. The mechanics and structure of the healing infarct have been the focus of numerous pre-clinical and clinical investigations, leading to the impending clinical introduction of material injections as a …


Elastin Like Polypeptides As Drug Delivery Vehicles In Regenerative Medicine Applications, Alex Leonard Mar 2016

Elastin Like Polypeptides As Drug Delivery Vehicles In Regenerative Medicine Applications, Alex Leonard

USF Tampa Graduate Theses and Dissertations

Elastin like polypeptides (ELPs) are a class of naturally derived biomaterials that are non-immunogenic, genetically encodable, and biocompatible making them ideal for a variety of biomedical applications, ranging from drug delivery to tissue engineering. Also, ELPs undergo temperature-mediated inverse phase transitioning, which allows them to be purified in a relatively simple manner from bacterial expression hosts. Being able to genetically encode ELPs allows for the incorporation of bioactive peptides and functionalization of ELPs. This work utilizes ELPs for regenerative medicine and drug delivery.

The goal of the first study was to synthesize a biologically active epidermal growth factor-ELP (EGF-ELP) fusion …


Bioactive Poly(Beta-Amino Ester) Biomaterials For Treatment Of Infection And Oxidative Stress, Andrew L. Lakes Jan 2016

Bioactive Poly(Beta-Amino Ester) Biomaterials For Treatment Of Infection And Oxidative Stress, Andrew L. Lakes

Theses and Dissertations--Chemical and Materials Engineering

Polymers have deep roots as drug delivery tools, and are widely used in clinical to private settings. Currently, however, numerous traditional therapies exist which may be improved through use of polymeric biomaterials. Through our work with infectious and oxidative stress disease prevention and treatment, we aimed to develop application driven, enhanced therapies utilizing new classes of polymers synthesized in-house. Applying biodegradable poly(β-amino ester) (PBAE) polymers, covalent-addition of bioactive substrates to these PBAEs avoided certain pitfalls of free-loaded and non-degradable drug delivery systems. Further, through variation of polymer ingredients and conditions, we were able to tune degradation rates, release profiles, cellular …