Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Biomedical Engineering and Bioengineering

Extracting The Structure And Conformations Of Biological Entities From Large Datasets, Ali Dashti Dec 2013

Extracting The Structure And Conformations Of Biological Entities From Large Datasets, Ali Dashti

Theses and Dissertations

In biology, structure determines function, which often proceeds via changes in conformation. Efficient means for determining structure exist, but mapping conformations continue to present a serious challenge. Single-particles approaches, such as cryogenic electron microscopy (cryo-EM) and emerging "diffract & destroy" X-ray techniques are, in principle, ideally positioned to overcome these challenges. But the algorithmic ability to extract information from large heterogeneous datasets consisting of "unsorted" snapshots - each emanating from an unknown orientation of an object in an unknown conformation - remains elusive.

It is the objective of this thesis to describe and validate a powerful suite of manifold-based algorithms …


Formulation Development Of A Polymer-Drug Matrix With A Controlled Release Profile For The Treatment Of Glaucoma, Eric W. Tsoi Dec 2013

Formulation Development Of A Polymer-Drug Matrix With A Controlled Release Profile For The Treatment Of Glaucoma, Eric W. Tsoi

Master's Theses

Glaucoma is the leading cause of blindness in the United States accounting for 9-12% of all cases of blindness. Currently, the front line treatment for glaucoma are prostaglandins that may have to be taken up to several times a day. Even with proper treatment, roughly 11% of the patients using the treatment are non-compliant and lose their vision. In this project, ForSight Laboratories has developed a pharmaceutical drug delivering implant with the capability of sustaining long-term release of a prostaglandin as a new way to treat the condition. This project reports the product development of a polymer drug matrix with …


Extraction And Classification Of Drug-Drug Interaction From Biomedical Text Using A Two-Stage Classifier, Majid Rastegar-Mojarad Dec 2013

Extraction And Classification Of Drug-Drug Interaction From Biomedical Text Using A Two-Stage Classifier, Majid Rastegar-Mojarad

Theses and Dissertations

One of the critical causes of medical errors is Drug-Drug interaction (DDI), which occurs when one drug increases or decreases the effect of another drug. We propose a machine learning system to extract and classify drug-drug interactions from the biomedical literature, using the annotated corpus from the DDIExtraction-2013 shared task challenge. Our approach applies a two-stage classifier to handle the highly unbalanced class distribution in the corpus. The first stage is designed for binary classification of drug pairs as interacting or non-interacting, and the second stage for further classification of interacting pairs into one of four interacting types: advise, effect, …


Modeling And Control Of Nanoparticle Bloodstream Concentration For Cancer Therapies, Scarlett S. Bracey Oct 2013

Modeling And Control Of Nanoparticle Bloodstream Concentration For Cancer Therapies, Scarlett S. Bracey

Doctoral Dissertations

Currently, the most commonly used treatments for cancerous tumors (chemotherapy, radiation, etc.) have almost no method of monitoring the administration of the treatment for adverse effects in real time. Without any real time feedback or control, treatment becomes a "guess and check" method with no way of predicting the effects of the drugs based on the actual bioavailability to the patient's body. One particular drug may be effective for one patient, yet provide no benefit to another. Doctors and scientists do not routinely attempt to quantifiably explain this discrepancy. In this work, mathematical modeling and analysis techniques are joined together …


Fabricating Cost-Effective Nanostructures For Biomedical Applications, Erden Ertorer Sep 2013

Fabricating Cost-Effective Nanostructures For Biomedical Applications, Erden Ertorer

Electronic Thesis and Dissertation Repository

In this thesis we described inexpensive alternatives to fabricate nanostructures on planar substrates and provided example applications to discuss the efficiency of fabricated nanostructures.

The first method we described is forming large area systematically changing multi-shape nanoscale structures on a chip by laser interference lithography. We analyzed the fabricated structures at different substrate positions with respect to exposure time, exposure angle and associated light intensity profile. We presented experimental details related to the fabrication of symmetric and biaxial periodic nanostructures on photoresist, silicon surfaces, and ion-milled glass substrates. Behavior of osteoblasts and osteoclasts on the nanostructures was investigated. These results …


Piv-Based Investigation Of Hemodynamic Factors In Diseased Carotid Artery Bifurcations With Varying Plaque Geometries, Sarah Kefayati Aug 2013

Piv-Based Investigation Of Hemodynamic Factors In Diseased Carotid Artery Bifurcations With Varying Plaque Geometries, Sarah Kefayati

Electronic Thesis and Dissertation Repository

Ischemic stroke is often a consequence of complications due to clot formation (i.e. thrombosis) at the site of an atherosclerotic plaque developed in the internal carotid artery. Hemodynamic factors, such as shear-stress forces and flow disturbances, can facilitate the key mechanisms of thrombosis. Atherosclerotic plaques can differ in the severity of stenosis (narrowing), in eccentricity (symmetry), as well as inclusion of ulceration (wall roughness). Therefore, in terms of clinical significance, it is important to investigate how the local hemodynamics of the carotid artery is mediated by the geometry of plaque. Knowledge of thrombosis-associated hemodynamics may provide a basis to introduce …


Efficient Computation Of K-Nearest Neighbor Graphs For Large High-Dimensional Data Sets On Gpu Clusters, Ali Dashti Aug 2013

Efficient Computation Of K-Nearest Neighbor Graphs For Large High-Dimensional Data Sets On Gpu Clusters, Ali Dashti

Theses and Dissertations

The k-Nearest Neighbor Graph (k-NNG) and the related k-Nearest Neighbor (k-NN) methods have a wide variety of applications in areas such as bioinformatics, machine learning, data mining, clustering analysis, and pattern recognition. Our application of interest is manifold embedding. Due to the large dimensionality of the input data (<15k), spatial subdivision based techniques such OBBs, k-d tree, BSP etc., are not viable. The only alternative is the brute-force search, which has two distinct parts. The first finds distances between individual vectors in the corpus based on a pre-defined metric. Given the distance matrix, the second step selects k nearest neighbors for each member of the query data set.

This thesis presents the development and implementation of a distributed exact k-Nearest Neighbor Graph (k-NNG) construction method. The proposed method uses Graphics Processing Units (GPUs) and exploits multiple levels of parallelism for distributed computational systems using GPUs. It is scalable for different cluster sizes, with each compute node in the cluster …


Polysaccharide-Based Nanocarriers For Improved Drug Delivery, Nan Zhang Aug 2013

Polysaccharide-Based Nanocarriers For Improved Drug Delivery, Nan Zhang

Dissertations - ALL

The field of drug delivery has provided a solution to the limited efficacy and high toxicity of many drugs. Nano-sized drug carriers are popular because their size allows for selective accumulation in the diseased area. Polysaccharides are non-toxic and biodegradable natural polymers that can serve as the basis for these nano-sized carriers. Polysialic acid (PSA) is such a polysaccharide with strong hydrophilicity that may reduce uptake by the reticuloendothelial system and prolong drug circulation. In this study, we developed PSA-based nanocarriers, specifically micelles and nanoparticles, for improved drug delivery with improved efficacy and minimized toxicity. PSA-based micelle systems were developed …


Protein Loop Length Estimation From Medium Resolution Cryoem Images, Andrew R. Mcknight Jul 2013

Protein Loop Length Estimation From Medium Resolution Cryoem Images, Andrew R. Mcknight

Computer Science Theses & Dissertations

In the post-genomic era, proteomics research presents a new frontier in life science. Proteins play roles in virtually every biological process, and understanding their atomic structures is the key to unraveling how they carry out their work. Compared to the over half million protein sequences in UniProt, only around 25,000 unique sequences have been atomically modeled and deposited to PDB (Protein Databank). Cryoelectron Microscopy (cryoEM) is an important biophysical technique that produces 3D subnanometer resolution images of molecules not amenable to past approaches like x-ray crystallography or nuclear magnetic resonance. De novo modeling is becoming a promising approach to derive …


Butyl Rubber-Aliphatic Polyester Graft Copolymers For Biomedical Applications: Synthesis And Analysis Of Chemical, Physical And Biological Properties, Bethany A. Turowec Jun 2013

Butyl Rubber-Aliphatic Polyester Graft Copolymers For Biomedical Applications: Synthesis And Analysis Of Chemical, Physical And Biological Properties, Bethany A. Turowec

Electronic Thesis and Dissertation Repository

Biomaterials can be used in a wide variety of medical applications owing to their breadth of characteristics that can be imparted by varying their chemical structures. Butyl rubber (IIR), which is a copolymer of isobutylene (IB) and small percentages of isoprene (IP), is particularly attractive as a biomaterial because of its elastomeric mechanical properties, biocompatibility, impermeability and high damping characteristics. IIR is typically vulcanized through chemical-based crosslinking mechanisms. However, these methods are not acceptable for biological applications. This thesis focuses on the synthesis of IIR-polyester graft copolymers by grafting biodegradable and biocompatible polyesters including poly(caprolactone) (PCL) and poly(d,l-lactide) (PDLLA) to …


Femtosecond Laser Patterned Templates And Imprinted Polymer Structures, Deepak Rajput May 2013

Femtosecond Laser Patterned Templates And Imprinted Polymer Structures, Deepak Rajput

Doctoral Dissertations

Femtosecond laser machining is a direct-write lithography technique by which user-defined patterns are efficiently and rapidly generated at the surface or within the bulk of transparent materials. When femtosecond laser machining is performed with tightly focused amplified pulses in single-pulse mode, transparent substrates like fused silica can be surface patterned with high aspect ratio (>10:1) and deep (>10 μm) nanoholes. The main objective behind this dissertation is to develop single-pulse amplified femtosecond laser machining into a novel technique for the production of fused silica templates with user-defined patterns made of high aspect ratio nanoholes. The size of the …


Study Of Immobilizing Cadmium Selenide Quantum Dots In Selected Polymers For Application In Peroxyoxalate Chemiluminescence Flow Injection Analysis, Christopher S. Moore May 2013

Study Of Immobilizing Cadmium Selenide Quantum Dots In Selected Polymers For Application In Peroxyoxalate Chemiluminescence Flow Injection Analysis, Christopher S. Moore

Electronic Theses and Dissertations

Two batches of CdSe QDs with different sizes were synthesized for immobilizing in polyisoprene (PI), polymethylmethacrylate (PMMA), and low-density polyethylene (LDPE). The combinations of QDs and polymer substrates were evaluated for their analytical fit-for-use in applicable immunoassays. Hydrogen peroxide standards were injected into the flow injection analyzer (FIA) constructed to simulate enzyme-generated hydrogen peroxide reacting with bis-(2,4,6-trichlorophenyl) oxalate.

Linear correlations between hydrogen peroxide and chemilumenscent intensities yielded regression values greater than 0.9750 for hydrogen peroxide concentrations between 1.0 x 10-4 M and 1.0 x 10-1 M. The developed technique’s LOD was approximately 10 ppm. Variability of the prepared …


Studies Of Functionalized Nanoparticles For Smart Self-Assembly And As Controlled Drug Delivery, Xiaochu Ding Jan 2013

Studies Of Functionalized Nanoparticles For Smart Self-Assembly And As Controlled Drug Delivery, Xiaochu Ding

Dissertations, Master's Theses and Master's Reports - Open

This dissertation is related to the studies of functionalized nanoparticles for self-assembly and as controlled drug delivery system. The whole topic is composed of two parts. In the first part, the research was conducted to design and synthesize a new type of ionic peptide-functionalized copolymer conjugates for self-assembly into nanoparticle fibers and 3D scaffolds with the ability of multi-drug loading and governing the release rate of each drug for tissue engineering. The self-assembly study confirmed that such peptide-functionalized amphiphilic copolymers underwent different self-assembly behavior. The bigger nanoparticles were more easily assembled into nanoparticle fibers and 3D scaffolds with larger pore …


Synthesis And Characterization Of Biodegradable Poly(Vinyl Esters) With Hdac Inhibitory Activity, Kyle Lawrence Horton Jan 2013

Synthesis And Characterization Of Biodegradable Poly(Vinyl Esters) With Hdac Inhibitory Activity, Kyle Lawrence Horton

Wayne State University Theses

HDAC inhibitors are known to have anti-inflammatory properties. HDAC inhibitors are used in combination with Oct4 to generate induced pluripotent stem cells. I hypothesized that polyesters based on simple aliphatic HDAC inhibitors like valproic acid (VPA) and phenylbutyric acid (PBA) can serve as alternatives to existing polyester biomaterials with improved anti-inflammatory properties and as scaffolds for generation of iPSCs when used in combination with layer-by-layer thin films delivering reprogramming transcription factors. Vinyl ester of phenylbutyric acid (VEPA) and vinyl ester of valproic acid (VEVA) were synthesized from their carboxylic acid precursors using an iridium complex catalyst at yields as high …


Visual Exploration And Information Analytics Of High-Dimensional Medical Images, Darshan Pai Jan 2013

Visual Exploration And Information Analytics Of High-Dimensional Medical Images, Darshan Pai

Wayne State University Dissertations

Data visualization has transformed how we analyze increasingly large and complex data sets. Advanced visual tools logically represent data in a way that communicates the most important information inherent within it and culminate the analysis with an insightful conclusion. Automated analysis disciplines - such as data mining, machine learning, and statistics - have traditionally been the most dominant fields for data analysis. It has been complemented with a near-ubiquitous adoption of specialized hardware and software environments that handle the storage, retrieval, and pre- and postprocessing of digital data. The addition of interactive visualization tools allows an active human participant in …


New Microarray Image Segmentation Using Segmentation Based Contours Method, Yuan Cheng Jan 2013

New Microarray Image Segmentation Using Segmentation Based Contours Method, Yuan Cheng

Doctoral Dissertations

The goal of the research developed in this dissertation is to develop a more accurate segmentation method for Affymetrix microarray images. The Affymetrix microarray biotechnologies have become increasingly important in the biomedical research field. Affymetrix microarray images are widely used in disease diagnostics and disease control. They are capable of monitoring the expression levels of thousands of genes simultaneously. Hence, scientists can get a deep understanding on genomic regulation, interaction and expression by using such tools.

We also introduce a novel Affymetrix microarray image simulation model and how the Affymetrix microarray image is simulated by using this model. This simulation …


Nonlinear Granger Causality And Its Application In Decoding Of Human Reaching Intentions, Mengting Liu Jan 2013

Nonlinear Granger Causality And Its Application In Decoding Of Human Reaching Intentions, Mengting Liu

Doctoral Dissertations

Multi-electrode recording is a key technology that allows the brain mechanisms of decision making, cognition, and their breakdown in diseases to be studied from a network perspective. As the hypotheses concerning the role of neural interactions in cognitive paradigms become increasingly more elaborate, the ability to evaluate the direction of neural interactions in neural networks holds the key to distinguishing their functional significance.

Granger Causality (GC) is used to detect the directional influence of signals between multiple locations. To extract the nonlinear directional flow, GC was completed through a nonlinear predictive approach using radial basis functions (RBF). Furthermore, to obtain …