Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biomedical Engineering and Bioengineering

Real-Time Analysis Of Brain Tumor Cell Dynamics: Novel Thermoelectric Detection Of L-Glutamate And Cell Metabolism Using Microfluidics, Siva Mahesh Tangutooru Oct 2012

Real-Time Analysis Of Brain Tumor Cell Dynamics: Novel Thermoelectric Detection Of L-Glutamate And Cell Metabolism Using Microfluidics, Siva Mahesh Tangutooru

Doctoral Dissertations

This study describes the design, fabrication and applications of a novel thermoelectric microfluidic bio-sensor. The bio-sensor is used for real time detection of the L-glutamate (L-glu) dynamics and metabolism for brain tumor cells immobilized in a microfluidic device. The microfluidic device is fabricated using a polymer/glass laminating technique (Xurography). An antimony-bismuth thin-film thermopile (primary sensing element) is integrated to the microfluidic device. The brain tumor cells are immobilized over the thermopile covering measuring and reference junctions of the thermopile using a poly-l-lysine coating layer. L-glutamate oxidase (L-GLOD) is immobilized over the measuring junctions of the thermopile prior to the immobilization …


Augmented Image-Guidance For Transcatheter Aortic Valve Implantation, Pencilla Lang Jul 2012

Augmented Image-Guidance For Transcatheter Aortic Valve Implantation, Pencilla Lang

Electronic Thesis and Dissertation Repository

The introduction of transcatheter aortic valve implantation (TAVI), an innovative stent-based technique for delivery of a bioprosthetic valve, has resulted in a paradigm shift in treatment options for elderly patients with aortic stenosis. While there have been major advancements in valve design and access routes, TAVI still relies largely on single-plane fluoroscopy for intraoperative navigation and guidance, which provides only gross imaging of anatomical structures. Inadequate imaging leading to suboptimal valve positioning contributes to many of the early complications experienced by TAVI patients, including valve embolism, coronary ostia obstruction, paravalvular leak, heart block, and secondary nephrotoxicity from contrast use.

A …


Development And Validation Methodology Of The Nuss Procedure Surgical Planner, Krzysztof J. Rechowicz Jul 2012

Development And Validation Methodology Of The Nuss Procedure Surgical Planner, Krzysztof J. Rechowicz

Computational Modeling & Simulation Engineering Theses & Dissertations

Pectus excavatum (PE) is a congenital chest wall deformity which is characterized, in most cases, by a deep depression of the sternum. A minimally invasive technique for the repair of PE (MIRPE), often referred to as the Nuss procedure, has been proven to be more advantageous than many other PE treatment techniques. The Nuss procedure consists of placement of a metal bar(s) underneath the sternum, thereby forcibly changing the geometry of the ribcage. Because of the prevalence of PE and the popularity of the Nuss procedure, the demand to perform this surgery is greater than ever. Therefore, a Nuss procedure …


Mri-Based Attenuation Correction In Emission Computed Tomography, Harry R. Marshall May 2012

Mri-Based Attenuation Correction In Emission Computed Tomography, Harry R. Marshall

Electronic Thesis and Dissertation Repository

The hybridization of magnetic resonance imaging (MRI) with positron emission tomography (PET) or single photon emission computed tomography (SPECT) enables the collection of an assortment of biological data in spatial and temporal register. However, both PET and SPECT are subject to photon attenuation, a process that degrades image quality and precludes quantification. To correct for the effects of attenuation, the spatial distribution of linear attenuation coefficients (μ-coefficients) within and about the patient must be available. Unfortunately, extracting μ-coefficients from MRI is non-trivial. In this thesis, I explore the problem of MRI-based attenuation correction (AC) in emission tomography.

In particular, I …


Synergistic Effect Of Subnanosecond Pulsed Electric Fields And Temperature On The Viability Of Biological Cells, James Thomas Camp Apr 2012

Synergistic Effect Of Subnanosecond Pulsed Electric Fields And Temperature On The Viability Of Biological Cells, James Thomas Camp

Electrical & Computer Engineering Theses & Dissertations

Pulsed electric fields have been used to induce a biological response in cells, and at sufficient energy, can cause cell death. By reducing the pulse duration from presently used nanosecond to subnanosecond ranges, the electric field can be delivered to biological tissue non-invasively by the use of an antenna instead of electrodes, such as needles. Studies have previously been completed in which the aim was to determine the energy density (electric field strength, number of pulses) required to induce cell death with 800 ps pulses. Based on this data, it was concluded that for pulse durations of 200 ps, with …