Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Biomedical Engineering and Bioengineering

Sol-Gel Derived Bioceramic Poly(Diethyl Fumarate – Co – Triethoxyvinylsilane) Composite, Aref Sleiman Mar 2022

Sol-Gel Derived Bioceramic Poly(Diethyl Fumarate – Co – Triethoxyvinylsilane) Composite, Aref Sleiman

Electronic Thesis and Dissertation Repository

Synthetic bone graft materials have become an increasingly popular choice for bone augmentation. Ceramic-based and polymer-based bone graft materials constitute the two main classes of synthetic bone graft materials. This study investigated the synthesis of novel bioactive composites for their potential use as bone graft biomaterials. Poly(diethyl fumarate-co-triethoxyvinylsilane)/bioceramic class II organic/inorganic hybrid biomaterials were synthesized via a sol gel process. These biomaterials were then reacted with an ammonium phosphate solution to prepare their respective composites. For the first time, we successfully synthesized sol-gel derived bioceramic poly(diethyl fumarate-co-triethoxyvinylsilane) composites. In vitro bioactivity evaluation of poly(diethyl fumarate-co-triethoxyvinylsilane)/bioceramic composites in simulated body fluid …


Catechol-Containing Copolymers As An Active Ingredient For Denture Adhesives, Vincent Ying Wun Kong Apr 2021

Catechol-Containing Copolymers As An Active Ingredient For Denture Adhesives, Vincent Ying Wun Kong

Electronic Thesis and Dissertation Repository

Moisture inside the mouth adds challenge to making denture adhesives formulations. Some formulations have zinc to enhance adhesion on wet skin despite knowing the health hazards. Inspired by mussel foot proteins’ catechol unit’s strong underwater adhesion, nine catechol-containing copolymers (P1A-P3C) were synthesized by free radical polymerization of 3,4-dimethoxystyrene (3,4- DMS) with different styrene derivatives followed by deprotection. P1A-P3C were used to make Fn(P)-C-PBS denture adhesive formulations which had suitable shear stresses around ≥ 5 kPa satisfying ISO 10873. In-situ NMR studies of free radical polymerization of 3,4 - DMS and styrene derivatives allowed computation of their reactivity ratios showing all …


A Ph-Sensitive Delivery System For The Prevention Of Dental Caries Using Salivary Proteins, Yi Zhu May 2019

A Ph-Sensitive Delivery System For The Prevention Of Dental Caries Using Salivary Proteins, Yi Zhu

Electronic Thesis and Dissertation Repository

Dental caries remains one of the most common chronic diseases worldwide. Salivary proteins such as histatins have demonstrated biological functions directly related to tooth homeostasis and prevention of dental caries. However, histatins are susceptible to the high proteolytic activities in the oral environment. Therefore, pH-sensitive chitosan nanoparticles (CNs) have been proposed as potential carriers to target major oral diseases that occur under acidic conditions (e.g. dental caries and dental erosion). Four different types of chitosan polymers were investigated and the optimized CNs successfully loaded histatin 3 and released it selectively under acidic conditions. Through loading the survival time of histatin …


Controlled Delivery Of Angiogenic And Arteriogenic Growth Factors From Biodegradable Poly(Ester Amide) Electrospun Fibers For Therapeutic Angiogenesis, Somiraa S. Said Aug 2016

Controlled Delivery Of Angiogenic And Arteriogenic Growth Factors From Biodegradable Poly(Ester Amide) Electrospun Fibers For Therapeutic Angiogenesis, Somiraa S. Said

Electronic Thesis and Dissertation Repository

Therapeutic angiogenesis relies on the delivery of exogenous growth factors to stimulate neovessel formation. However, systemic administration of angiogenic factors results in rapid clearance from the site of interest due to their short biological half-life. In this work, we are reporting controlled delivery of a ‘cocktail’ of growth factors, an angiogenic factor −fibroblast growth factor-2 (FGF2), and an arteriogenic factor −fibroblast growth factor-9 (FGF9), from biodegradable poly(ester amide) (PEA) electrospun fibers towards targeting neovascular formation and maturation. FGF2 and FGF9 were dual loaded into PEA fibers using a mixed blend and emulsion electrospinning technique. Matrigel tube formation and Boyden chamber …


Laser-Assisted Surface Modification Of Hybrid Hydrogels To Prevent Bacterial Contamination And Protein Fouling, Guobang Huang Aug 2014

Laser-Assisted Surface Modification Of Hybrid Hydrogels To Prevent Bacterial Contamination And Protein Fouling, Guobang Huang

Electronic Thesis and Dissertation Repository

Silicone hydrogels have been extensively studied in the fields of contact lenses, tissue engineering, and drug delivery due to their good biocompatibility, high oxygen permeability, and proper light transmission. However, their applications in biomedical devices are limited by protein adsorption and bacterial contamination because of the hydrophobic surface of silicone, which will cause more irreversible protein adsorption. Several physical methods can be applied to create a hydrophilic surface on hydrogels, such as spin coating, physical vapor deposition, dip coating, drop casting, etc. Compared to the conventional methods, the matrix assisted pulsed laser evaporation (MAPLE) is suitable to produce biopolymer/polymer film …


Humidity Effect On The Structure Of Electrospun Core-Shell Pcl-Peg Fibers For Tissue Regeneration Applications, Adam P. Golin Apr 2014

Humidity Effect On The Structure Of Electrospun Core-Shell Pcl-Peg Fibers For Tissue Regeneration Applications, Adam P. Golin

Electronic Thesis and Dissertation Repository

With the aim of creating a biodegradable scaffold for tympanic membrane (TM) tissue regeneration, core-shell nanofibers composed of a poly(caprolactone) shell and a poly(ethylene glycol) core were created using a coaxial electrospinning technique. In order to create fibers with an optimal core-shell morphology, the effect of relative humidity (RH) on the core-shell nanofibers was systematically studied, with a FITC-BSA complex encapsulated in the core to act as a model protein. The core-shell nanofibers were electrospun at relative humidity values of 20, 25, 30, and 40% RH within a glove box outfitted for humidity control. The core-shell morphology of the fibers …


Production Of Lignin-Based Phenolic Resins Using De-Polymerized Kraft Lignin And Process Optimization, Homaira Siddiqui Dec 2013

Production Of Lignin-Based Phenolic Resins Using De-Polymerized Kraft Lignin And Process Optimization, Homaira Siddiqui

Electronic Thesis and Dissertation Repository

Commercialization of Lignin-based phenol formaldehyde resins (LPF) has been limited due to the increase in curing temperatures and decrease in adhesive strength of LPF compared to conventional phenolic resins. Lignin depolymerization can increase the reactivity of lignin; however, the effect of lignin molecular weight on curing performance of LPF resins has yet to be investigated. This research work examined the optimization of synthesis parameters including percent substitution of phenol with lignin, formaldehyde- to-phenol ratio (F/P), and Mw of lignin to reduce the curing temperature and increase the adhesive strength of LPF. DSC analysis indicated that lignin with Mw ~1200g/mol resulted …


Electrospinning Of Core-Shell Collagen Nanofibers, Ying Li Aug 2013

Electrospinning Of Core-Shell Collagen Nanofibers, Ying Li

Electronic Thesis and Dissertation Repository

In tissue engineering, the scaffold plays a critical role in guiding and supporting cells to function and grow optimally. The electrospun nanofibrous scaffold can serve as a near ideal substrate for tissue engineering because it has high surface area and the three-dimensional interconnected porous network can enhance cell attachment and proliferation. Core-shell nanofibrous scaffolds produced with coaxial electrospinning allow bioactive molecule encapsulation to improve cell adhesion, mediate and promote the proper signaling among the cells for their functioning and growth. In the current study, core-shell collagen nanofibers were fabricated via coaxial electrospinning with horizontal and vertical configurations. Core-shell nanofibers with …


Butyl Rubber-Aliphatic Polyester Graft Copolymers For Biomedical Applications: Synthesis And Analysis Of Chemical, Physical And Biological Properties, Bethany A. Turowec Jun 2013

Butyl Rubber-Aliphatic Polyester Graft Copolymers For Biomedical Applications: Synthesis And Analysis Of Chemical, Physical And Biological Properties, Bethany A. Turowec

Electronic Thesis and Dissertation Repository

Biomaterials can be used in a wide variety of medical applications owing to their breadth of characteristics that can be imparted by varying their chemical structures. Butyl rubber (IIR), which is a copolymer of isobutylene (IB) and small percentages of isoprene (IP), is particularly attractive as a biomaterial because of its elastomeric mechanical properties, biocompatibility, impermeability and high damping characteristics. IIR is typically vulcanized through chemical-based crosslinking mechanisms. However, these methods are not acceptable for biological applications. This thesis focuses on the synthesis of IIR-polyester graft copolymers by grafting biodegradable and biocompatible polyesters including poly(caprolactone) (PCL) and poly(d,l-lactide) (PDLLA) to …