Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Microparticle Propulsion For In Vivo Navigation, Louis Rogowski Dec 2020

Microparticle Propulsion For In Vivo Navigation, Louis Rogowski

Mechanical Engineering Research Theses and Dissertations

Microscale propulsion impacts a diverse array of fields, with simplistic microrobots allowing for novel innovations in microscale surgery and drug delivery. Propulsion at the microscale is constrained by physics, with time-reversal and geometric symmetries limiting available propulsion mechanisms. However, certain fluid environments and surface coatings allow for the propulsion of microparticles through externally applied magnetic fields. Presented here is a detailed analysis of microparticles propelling using spontaneous symmetry breaking, flagella surface coatings, and multi-modal actuation mechanisms. Spontaneous symmetry breaking in nonlinearly viscoelastic fluids is presented for the first time in literature, with two equal and opposite propulsion states existing along …


Detection Of Nucleotides In Hydrated Ssdna Via 2-D H-Bn Nanopore With Ionic-Liquid/Salt-Water Interface, Jungsoo Lee Dec 2020

Detection Of Nucleotides In Hydrated Ssdna Via 2-D H-Bn Nanopore With Ionic-Liquid/Salt-Water Interface, Jungsoo Lee

Multidisciplinary Studies Theses and Dissertations

Accomplishing slow translocation speed with high sensitivity has been the greatest mission for solid-state nanopore (SSN) to electrically detect nucleobases in single-stranded DNA (ssDNA). In this study, a method to detect nucleobases in ssDNA using a SSN is introduced by considerably slowing down the translocation speed and effectively increasing its sensitivity. The ultra-thin titanium dioxide (TiO2) coated hexagonal boron nitride (h-BN) nanopore was fabricated, along with an ionic-liquid [bmim][PF6]/2.0 M KCl aqueous (cis/trans) interfacial system, to increase both the spatial and the temporal resolutions. As the ssDNA molecules entered the nanopore, a …


Soft-Microrobotics: The Manipulation Of Alginate Artificial Cells, Samuel Sheckman May 2018

Soft-Microrobotics: The Manipulation Of Alginate Artificial Cells, Samuel Sheckman

Mechanical Engineering Research Theses and Dissertations

In this work, the approach to the manipulation of alginate artificial cell soft-microrobots, both individually and in swarms is shown. Fabrication of these artificial cells were completed through centrifugation, producing large volumes of artificial cells, encapsulated with superparamagnetic iron oxide nanoparticles; these artificial cells can be then externally stimulated by an applied magnetic field. The construction of a Permeant Magnet Stage (PMS) was produced to manipulate the artificial cells individually and in swarms. The stage functionalizes the permanent magnet in the 2D xy-plane. Once the PMS was completed, Parallel self-assembly (Object Particle Computation) using swarms of artificial cells in complex …