Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Biomedical Engineering and Bioengineering

Closed-Loop Brain-Computer Interfaces For Memory Restoration Using Deep Brain Stimulation, David Xiaoliang Wang May 2022

Closed-Loop Brain-Computer Interfaces For Memory Restoration Using Deep Brain Stimulation, David Xiaoliang Wang

Electrical Engineering Theses and Dissertations

The past two decades have witnessed the rapid growth of therapeutic brain-computer interfaces (BCI) targeting a diversity of brain dysfunctions. Among many neurosurgical procedures, deep brain stimulation (DBS) with neuromodulation technique has emerged as a fruitful treatment for neurodegenerative disorders such as epilepsy, Parkinson's disease, post-traumatic amnesia, and Alzheimer's disease, as well as neuropsychiatric disorders such as depression, obsessive-compulsive disorder, and schizophrenia. In parallel to the open-loop neuromodulation strategies for neuromotor disorders, recent investigations have demonstrated the superior performance of closed-loop neuromodulation systems for memory-relevant disorders due to the more sophisticated underlying brain circuitry during cognitive processes. Our efforts are …


Magnetic Gradient-Based Magnetic Tweezer System For 3d And Swarm Control Of Microswimmer, Xiao Zhang May 2021

Magnetic Gradient-Based Magnetic Tweezer System For 3d And Swarm Control Of Microswimmer, Xiao Zhang

Mechanical Engineering Research Theses and Dissertations

Microscale manipulation has very promising potential in medical applications such as drug delivery, minimal and invasion surgery. Contactless control is preferable as remote manipulation is necessary for in vivo applications. Among different control methods, magnetic power source is more suitable and robust for the applications mentioned above. Presented here is a magnetic tweezer system, which manipulates microscale magnetic particles using magnetic forces created by magnetic field gradient. The proposed system has three advantages: First, force applied by the magnetic tweezer system does not contact with the target object and can be generated in different directions. Second, the magnetic tweezer system …


Microparticle Propulsion For In Vivo Navigation, Louis Rogowski Dec 2020

Microparticle Propulsion For In Vivo Navigation, Louis Rogowski

Mechanical Engineering Research Theses and Dissertations

Microscale propulsion impacts a diverse array of fields, with simplistic microrobots allowing for novel innovations in microscale surgery and drug delivery. Propulsion at the microscale is constrained by physics, with time-reversal and geometric symmetries limiting available propulsion mechanisms. However, certain fluid environments and surface coatings allow for the propulsion of microparticles through externally applied magnetic fields. Presented here is a detailed analysis of microparticles propelling using spontaneous symmetry breaking, flagella surface coatings, and multi-modal actuation mechanisms. Spontaneous symmetry breaking in nonlinearly viscoelastic fluids is presented for the first time in literature, with two equal and opposite propulsion states existing along …


Detection Of Nucleotides In Hydrated Ssdna Via 2-D H-Bn Nanopore With Ionic-Liquid/Salt-Water Interface, Jungsoo Lee Dec 2020

Detection Of Nucleotides In Hydrated Ssdna Via 2-D H-Bn Nanopore With Ionic-Liquid/Salt-Water Interface, Jungsoo Lee

Multidisciplinary Studies Theses and Dissertations

Accomplishing slow translocation speed with high sensitivity has been the greatest mission for solid-state nanopore (SSN) to electrically detect nucleobases in single-stranded DNA (ssDNA). In this study, a method to detect nucleobases in ssDNA using a SSN is introduced by considerably slowing down the translocation speed and effectively increasing its sensitivity. The ultra-thin titanium dioxide (TiO2) coated hexagonal boron nitride (h-BN) nanopore was fabricated, along with an ionic-liquid [bmim][PF6]/2.0 M KCl aqueous (cis/trans) interfacial system, to increase both the spatial and the temporal resolutions. As the ssDNA molecules entered the nanopore, a …


Control And Locomotion Of Inertially And Magnetically Actuated Multi-Scale Robotic Systems, Ehab Al Khatib May 2020

Control And Locomotion Of Inertially And Magnetically Actuated Multi-Scale Robotic Systems, Ehab Al Khatib

Mechanical Engineering Research Theses and Dissertations

In this research, two actuation systems were introduced, inertial and magnetic actuation. In the inertial actuation, the robot used the transfer of momentum to navigate, and this momentum could be generated by spinning masses and wheels. Recent studies in our System Laboratory proved that a wide range of inertially actuated locomotion systems could be generated. This can be achieved by using a family tree approach, starting from a very simple system, and progressively evolving it to more complex ones. The motion diversity of these robots inspired us to extend their locomotion from a macro scale to millimeter and micro scales. …


Investigation Of The Electrode Polarization Effect For Biosensor Applications, Anil Koklu Aug 2019

Investigation Of The Electrode Polarization Effect For Biosensor Applications, Anil Koklu

Mechanical Engineering Research Theses and Dissertations

My research focuses on electrokinetic transport. Particularly, in this dissertation, we focus on fabrication and testing of micro electrodes with nanostructured surfaces to minimize the electrode polarization (EP) effects for biosensor applications. In the first study, electrochemical deposition of gold nanoparticles on to planar gold electrodes was used to generate rough surfaces. Dendritic nanostructures that reduced EP up to two orders of magnitude was obtained by optimizing the deposition conditions. These structures also enhanced dielectrophoresis (DEP) response of our bio-chips, making them usable in physiological buffers. In further studies we discovered a universal scaling of EP in the frequency domain, …


Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan Jul 2019

Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan

Mechanical Engineering Research Theses and Dissertations

In impact mechanics, the collision between two or more bodies is a common, yet a very challenging problem. Producing analytical solutions that can predict the post-collision motion of the colliding bodies require consistent modeling of the dynamics of the colliding bodies. This dissertation presents a new method for solving the two and multibody impact problems that can be used to predict the post-collision motion of the colliding bodies. Also, we solve the rigid body collision problem of planar kinematic chains with multiple contacts with external surfaces.

In the first part of this dissertation, we study planar collisions of Balls and …


Impedance-Based Microfluidic Platform For Quantitative Biology, Amin Mansoorifar Jul 2019

Impedance-Based Microfluidic Platform For Quantitative Biology, Amin Mansoorifar

Mechanical Engineering Research Theses and Dissertations

Dielectric properties of biological cells are functions of cellular structure, content, state, and phenotype. Dielectric spectroscopy (DS) is a nondestructive method to characterize dielectric properties by measuring impedance data over a frequency range. This method has been widely used for various applications such as counting, sizing, and monitoring biological cells and particles. Recently, this method has been suggested to be utilized in various stages of the drug discovery process due to its low sample consumption and fast analysis time.

In this thesis, we have developed a lab-on-a-chip device that uses an electro-activated microwells array for capturing, making DS measurements on, …


Soft-Microrobotics: The Manipulation Of Alginate Artificial Cells, Samuel Sheckman May 2018

Soft-Microrobotics: The Manipulation Of Alginate Artificial Cells, Samuel Sheckman

Mechanical Engineering Research Theses and Dissertations

In this work, the approach to the manipulation of alginate artificial cell soft-microrobots, both individually and in swarms is shown. Fabrication of these artificial cells were completed through centrifugation, producing large volumes of artificial cells, encapsulated with superparamagnetic iron oxide nanoparticles; these artificial cells can be then externally stimulated by an applied magnetic field. The construction of a Permeant Magnet Stage (PMS) was produced to manipulate the artificial cells individually and in swarms. The stage functionalizes the permanent magnet in the 2D xy-plane. Once the PMS was completed, Parallel self-assembly (Object Particle Computation) using swarms of artificial cells in complex …


Computational Theories For Human Stereo Vision, Han Gao May 2018

Computational Theories For Human Stereo Vision, Han Gao

Electrical Engineering Theses and Dissertations

Binocular stereopsis refers to the ability to perceive depth, which has always been a central problem in perception since the time of da Vinci. The foremost theoretical difficulty that arises when attempting to understand how the visual system computes disparity is known as the correspondence or matching problem. Decades of research upon macaque primary visual cortex has shown that in each layer of the primary visual cortex (V1) long-range horizontal connections among striate cortex cells exist which integrate information from different parts of the visual field. Inspired by long-range horizontal connections in V1 and the Jeffress model, a time-delay neural …