Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Biomedical Engineering and Bioengineering

Tissue Engineering A Blood Vessel Mimic While Monitoring Contamination Through Sterility Assurance Testing, Navid Djassemi Jul 2012

Tissue Engineering A Blood Vessel Mimic While Monitoring Contamination Through Sterility Assurance Testing, Navid Djassemi

Master's Theses

Tissue Engineering A Blood Vessel Mimic While Monitoring Contamination Through Sterility Assurance Testing

Navid Djassemi

Tissue engineering blood vessel mimics has been proposed as a method to analyze the endothelial cell response to intravascular devices that are used in today’s clinical settings for the treatment of cardiovascular disease. Thus, the development of in vitro blood vessel mimics (BVMs) in Cal Poly’s Tissue Engineering Lab has introduced the possibility of assessing the characteristics of cellular response to past, present, and future intravascular devices that aim at treating coronary artery disease.

This thesis aimed at improving the methods and procedures utilized in …


Development And Characterization Of An In-House Custom Bioreactor For The Cultivation Of A Tissue Engineered Blood-Brain Barrier, Amin Hadi Mirzaaghaeian Jul 2012

Development And Characterization Of An In-House Custom Bioreactor For The Cultivation Of A Tissue Engineered Blood-Brain Barrier, Amin Hadi Mirzaaghaeian

Master's Theses

The development of treatments for neurological disorders such as Alzheimer’s and Parkinson’s disease begins by understanding what these diseases affect and the consequences of further manifestation. One particular region where these diseases can produce substantial problems is the blood-brain barrier (BBB). The BBB is the selective diffusion barrier between the circulating blood and the brain. The barrier’s main function is to maintain CNS homeostasis and protect the brain from the extracellular environment. The progression of BBB research has advanced to the point where many have modeled the BBB in vitro with aims of further characterizing and testing the barrier. Particularly, …


Development Of In Vitro Tissue Engineered Blood Vessel Mimics In Complex Geometries For Coronary Stent Testing, Robert Dalton Chavez Jul 2012

Development Of In Vitro Tissue Engineered Blood Vessel Mimics In Complex Geometries For Coronary Stent Testing, Robert Dalton Chavez

Master's Theses

Coronary heart disease is the leading cause of death in the United States and occurs when plaque occludes coronary arteries. Coronary stents, which may be used to treat coronary occlusions, are small metal tubes that are implanted in coronary arteries to restore blood flow. After stent implantation, endothelial cells grow over the stent so that blood contacts the endothelial cells instead of the stent surface; this event is known as re-endothelialization. Re-endothelialization prevents blood from clotting on the stent surface and is a good predictor of stent success. Blood vessel mimics (BVMs) are in vitro tissue engineered models of human …


Characterization Of Tight Junction Formation In An In-Vitro Model Of The Blood-Brain Barrier, Michael Robert Machado Jul 2012

Characterization Of Tight Junction Formation In An In-Vitro Model Of The Blood-Brain Barrier, Michael Robert Machado

Master's Theses

Active and passive transport of substances between the microcirculation in the brain and the central nervous system is regulated by the Blood-Brain Barrier (BBB). This barrier allows for chronic and acute modulation of the CNS microenvironment, and protects the brain from potentially noxious compounds carried in the circulatory system. In-vitro modeling of the BBB has become the target of much research over the past decade, as there are many unanswered questions regarding modulations in the permeability of this barrier. Additionally, the development of a practical and inexpensive model of the BBB would facilitate a much more efficient drug development process. …


Development Of A Protocol To Measure Gene Expression In The Mouse Tibia, Daniel Hoover Jun 2012

Development Of A Protocol To Measure Gene Expression In The Mouse Tibia, Daniel Hoover

Biomedical Engineering

Numerous molecular factors active in bone tissue direct fracture repair and remodeling which can be altered by disease conditions such as Peripheral Arterial Disease (PAD) and Osteoporosis. Methods of molecular biology are commonly applied to investigate the expression and role of these molecular factors. This project presents a robust three-step protocol for examining gene expression in the mouse tibia. The protocol begins with isolating RNA from a flash frozen tibia sample. The isolated RNA is reverse transcribed into cDNA. Finally, PCR is performed to indentify expressed genes. Establishing this protocol will allow further research into the mechanisms of bone remodeling …


Development And Characterization Of Plga And Eptfe Blood Vessel Mimics Using Gene Expression Analysis, Michael Gibbons, Sarah Ur Jun 2012

Development And Characterization Of Plga And Eptfe Blood Vessel Mimics Using Gene Expression Analysis, Michael Gibbons, Sarah Ur

Biomedical Engineering

Tissue engineered blood vessels (TEBV’s) have the potential to act not only as a replacement for diseased vessels, but also as a testing platform for intravascular devices such as stents. To this end, the goal of this study was to develop protocols for the construction of TEBV’s composed of human vascular cells and either expanded polytetrafluoroethylene (ePTFE) or poly-lactic-co-glycolic acid (PLGA), as well as a protocol for gene expression in those TEBV’s. Initial experiments involved only human umbilical vein endothelial cells (HUVEC’s), but after low cell confluency and spreading in single-sodded vessels a second cell type, human umbilical vein smooth …


Design Of Experimentation To Systematically Determine The Interaction Between Electrospinning Variables And To Optimize The Fiber Diameter Of Electrospun Poly (D, L-Lactide-Co-Glycolide) Scaffolds For Tissue Engineered Constructs, Yvette S. Castillo Jun 2012

Design Of Experimentation To Systematically Determine The Interaction Between Electrospinning Variables And To Optimize The Fiber Diameter Of Electrospun Poly (D, L-Lactide-Co-Glycolide) Scaffolds For Tissue Engineered Constructs, Yvette S. Castillo

Master's Theses

Cardiac disease causes approximately a third of the deaths in the United States. Furthermore, most of these deaths are due to a condition termed atherosclerosis, which is a buildup of plaque in the coronary arteries, leading to occlusion of normal blood flow to the cardiac muscle. Among the methods to treat the condition, stents are devices that are used to restore normal blood flow in the atherosclerotic arteries. Before advancement can be made to these devices and changes can be tested in live models, a reliable testing method that mimics the environment of the native blood vessel is needed. Dr. …


Viscoelastic Anisotropic Finite Element Mixture Model Of Articular Cartilage Using Viscoelastic Collagen Fibers And Validation With Stress Relaxation Data, Matthew Alexander Griebel Jun 2012

Viscoelastic Anisotropic Finite Element Mixture Model Of Articular Cartilage Using Viscoelastic Collagen Fibers And Validation With Stress Relaxation Data, Matthew Alexander Griebel

Master's Theses

Experimental results show that collagen fibers exhibit stress relaxation under tension and a highly anisotropic distribution. To further develop the earlier model of Stender [1], the collagen constituent was updated to reflect its intrinsic viscoelasticity and anisotropic distribution, and integrated with an existing mixture model with glycosaminoglycans and ground substance matrix. A two-term Prony series expansion of the quasi-linear viscoelastic model was chosen to model the viscoelastic properties of the collagen fibers. Material parameters were determined by using the simplex method to minimize the sum of squared errors between model results and experimental stress relaxation data of tissue in tension. …


Evaluation Of Decellularization Procedures For Porcine Arteries, Charles Clapp Apr 2012

Evaluation Of Decellularization Procedures For Porcine Arteries, Charles Clapp

Biomedical Engineering

Coronary artery disease has become the leading cause of death in the United States, with over 425,000 deaths in 2006. Stenting has evolved into the preferred preventative technique for myocardial infarction by opening up an occluded artery, due to its low invasiveness compared to the alternative of coronary artery bypass grafting. Bare metal stents have been improved by coating with anti-proliferative drugs to advance their effects, but even drug eluting stents still have a risk of restenosis, thrombus formation, and necessary revascularization. Continual advancement in stent design necessitates faster, effective pre-clinical evaluation techniques. Kristen Cardinal, Ph.D., developed the blood vessel …


A Novel In-House Design Of A Bioreactor For The Modeling Of An In Vitro Blood Brain Barrier Model, Ian Mahaffey Jan 2012

A Novel In-House Design Of A Bioreactor For The Modeling Of An In Vitro Blood Brain Barrier Model, Ian Mahaffey

Biomedical Engineering

The blood brain barrier is the protector of the central nervous system and a physical barrier that functions to regulate the substances that can pass in and out of the brain; it is the function and integrity of this system that keeps the homeostasis of the central nervous system. Yet this shield against foreign invaders in the blood also prevents drugs designed for treatment of various ailments of the central nervous system from reaching their target in the brain. Developing drugs that can pass through this barrier, and understanding it’s function has become an area of increasing interest. Many researchers …