Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 40

Full-Text Articles in Biomedical Engineering and Bioengineering

Mechanisms Of Reduced Vascular Tone Following Arteriogenesis Induced By Femoral Artery Ligation, Christopher Hatch Aug 2019

Mechanisms Of Reduced Vascular Tone Following Arteriogenesis Induced By Femoral Artery Ligation, Christopher Hatch

Biomedical Engineering

The presence of a developed, native collateral network can decrease the severity of ischemic injury proceeding arterial occlusion. The collateral network must under arteriogenesis to enlarge and increase blood flow to the ischemic region. Although there has been tremendous effort attempting to understand the mechanisms of arteriogenesis, no therapies have been successful in improving patient outcome. To better understand the mechanisms involved in arteriogenesis, the effect of nitric oxide production, myogenic tone, and a-adrenergic receptors were evaluated as these have been identified as playing an important role in vascular injury. Arteriogenesis was induced by ligating the femoral artery between the ...


Evaluation Of Human Umbilical Vein Endothelial Cells In Blood Vessel Mimics Through Changes In Gene Expression And Caspase Activity, Conor Charles Hedigan Jun 2019

Evaluation Of Human Umbilical Vein Endothelial Cells In Blood Vessel Mimics Through Changes In Gene Expression And Caspase Activity, Conor Charles Hedigan

Master's Theses and Project Reports

Blood vessel mimics (BVMs) are simple tissue engineered blood vessel constructs intended for preclinical testing of vascular devices. This thesis developed and implemented methods to characterize two of these components. The first aim of this thesis investigated the effect of cell culture duration and flow conditions on endothelial cell gene expression, especially regarding endothelial-to-mesenchymal transition (EndMT). A trend of decreased endothelial marker gene expression and increased mesenchymal marker gene expression would indicate EndMT. qPCR analysis revealed that increased cell culture duration did not result in EndMT, and in fact increased endothelial marker expression as cell culture duration increased. Disturbed flow ...


Fluid Delivery System For A Cell Culture On A Microfluidic Chip, Austin J. Roeder, Colleen A. Richards, Emily A. Matteson Mar 2019

Fluid Delivery System For A Cell Culture On A Microfluidic Chip, Austin J. Roeder, Colleen A. Richards, Emily A. Matteson

Biomedical Engineering

This project report provides a description of the progress made in the development of a fluid delivery system for a microfluidic cell culture on a chip. The system is intended to be used in a humidified incubator in a university laboratory and the fluid delivery system is required to exist and operate within that incubator for extended periods of time. Therefore, the system will be gravity-driven and contain no electronic components. The key specification of the system is to provide fluid flow at a constant velocity.

After manufacturing and testing the device, all specifications were met except for the fluid ...


Plga Scaffold Device, Tyler D. Tackabery, Bryce Powada, Tate Morell Mar 2019

Plga Scaffold Device, Tyler D. Tackabery, Bryce Powada, Tate Morell

Biomedical Engineering

No abstract provided.


Pressure Cylinder Controlled Release Valve, Alexa Dominique Balbuena Mar 2019

Pressure Cylinder Controlled Release Valve, Alexa Dominique Balbuena

Biomedical Engineering

This project aims to integrate an automatic gas release system in a pre-existing scaffold fabrication process for tissue engineering applications.

To form the proper scaffold structure, the fabrication process is heavily influenced by the change in its surrounding pressure. The current production involves a pressure transducer and electric valve that is managed manually to create a suitable pressure environment for the scaffold. This method, although functional, proves to be ineffective when creating several batches; the user needs to constantly monitor the developing pressure profile and alter voltage parameters accordingly to create a linear gas release under a predetermined slope.

To ...


In Vitro Growth Of Osteoblasts On Poly Lactic-Co-Glycolic Acid Scaffolds Created Via Gas Foaming, Matthew James Thomas Sep 2018

In Vitro Growth Of Osteoblasts On Poly Lactic-Co-Glycolic Acid Scaffolds Created Via Gas Foaming, Matthew James Thomas

Master's Theses and Project Reports

This study analyzed the feasibility of using gas foaming to create Poly Lactic-co-Glycolic Acid (PLGA) scaffolds for use as a substrate in bone tissue engineering and set out to determine whether the presence of osteoblasts on these scaffolds enhanced their material stiffness. The process of bone formation involves osteoblasts depositing extracellular matrix and calcifying this matrix with calcium phosphate crystals (Hasegawa et al., 2017) and pits between 30-40μm in diameter on tissue engineering scaffold surfaces have been shown to best promote osteogenic activity in the presence of bone-forming cells (Halai et al., 2014).The scaffolds were determined to contain pits ...


Influence Of Fibroblasts On Functional Arteriogenesis In A Murine Chronic Hindlimb Ischemia Model, Ashli A. Santos Sep 2017

Influence Of Fibroblasts On Functional Arteriogenesis In A Murine Chronic Hindlimb Ischemia Model, Ashli A. Santos

Biomedical Engineering

Peripheral arterial occlusive disease (PAOD) occurs when there is a narrowing or blockage – usually a buildup of plaque - within the arteries that reduces blood flow to tissues which can chronic ischemia. As with most diseases, early detection and proactive treatment are important to maximize prognosis. Exercise effectively treats PAOD, but due to ischemic pain in the limbs, or intermittent claudication (IC), exercise can become painful and difficult. Due to the buildup of plaque, occlusions create an ischemic environment that changes the pressure distribution in collateral networks and increases the shear stress in transverse collaterals. Those two responses signal the beginning ...


Isolation And Culture Of Myofiber-Derived Cells From The Extensor Digitorum Longus Muscle, Ethan M. Tietze Jun 2017

Isolation And Culture Of Myofiber-Derived Cells From The Extensor Digitorum Longus Muscle, Ethan M. Tietze

Biomedical Engineering

Peripheral arterial occlusive disease (PAOD) involves distal artery occlusion by atherosclerotic plaques, which restricts blood flow and leads to ischemia in downstream tissues. Increased blood flow through preexisting collateral vessels leads to increased shear stress that triggers an outward remodeling of the vessel called arteriogenesis. In some cases this natural compensatory mechanism is able to sufficiently restore blood flow following arterial occlusion. However, for many individuals this process is insufficient to relieve peripheral ischemia, and patients experience intermittent claudication, or limb pain with locomotion or exercise. Without treatment, reduced blood flow can lead to tissue necrosis and potentially amputation. The ...


Development And Characterization Of Tissue Engineered Blood Vessel Mimics Under "Diabetic" Conditions, Shelby Gabrielle Kunz Jun 2017

Development And Characterization Of Tissue Engineered Blood Vessel Mimics Under "Diabetic" Conditions, Shelby Gabrielle Kunz

Master's Theses and Project Reports

The development of tissue engineered blood vessel mimics for the testing of intravascular devices in vitro has been established in the Cal Poly tissue engineering lab. Due to the prevalence of cardiovascular disease in diabetic patients and minimal accessible studies regarding the interactions between diabetes and intravascular devices used to treat vascular disease, there is a need for the development of diabetic models that more accurately represents diabetic processes occurring in the blood vessels, primarily endothelial dysfunction. This thesis aimed to create a diabetic blood vessel mimic by implementing a high glucose environment for culturing human endothelial cells from healthy ...


Microvascular Topology And Intravascular Endothelial Cell Labeling In The Gracilis Anterior Muscle Of Balb/C Mice, Paul Heckler Ii Aug 2014

Microvascular Topology And Intravascular Endothelial Cell Labeling In The Gracilis Anterior Muscle Of Balb/C Mice, Paul Heckler Ii

Biomedical Engineering

Peripheral arterial occlusive disease (PAOD) affects approximately 200 million individuals globally. The major underlying cause of PAOD is an inflammatory disease known as atherosclerosis, which results from the build-up of low-density lipoproteins (LDL) in the sub-intimal space. This initiates a complex cascade of events that lead to plaque growth. Plaque growth can then expand into the lumen of the vessel and result in occlusion and/or thrombosis. Symptoms of the disease can include claudication, ulcers, and/or gangrene, although many patients are asymptomatic. Similar to other forms of ischemic disease, risk factors for PAOD include hypertension, diabetes, and smoking. Common ...


Development And Implementation Of Assessment Methods For Tissue-Engineered Blood Vessel Mimics, Tanner Stevenson Jun 2014

Development And Implementation Of Assessment Methods For Tissue-Engineered Blood Vessel Mimics, Tanner Stevenson

Biomedical Engineering

Coronary Artery Disease (CAD), the most prevalent form of heart disease, is the result of clogged or damaged coronary arteries and claims around 380,000 Americans annually. A common treatment for CAD involves placing a stent into the artery in order to open the lumen and support the native tissue—a procedure that drastically reduces patient recovery times in comparison to heart bypass surgery. However, stents do not always interact well with the body and require additions such as surface coatings or drug elution in order for additional biocompatibility. These additions necessitate extensive in vitro and in vivo testing which ...


Functional Vasodilation Is Impaired In Arterialized Capillaries In The Spinotrapezius, Joshua P. Cutts Jun 2014

Functional Vasodilation Is Impaired In Arterialized Capillaries In The Spinotrapezius, Joshua P. Cutts

Biomedical Engineering

Ischemic diseases are the result of atherosclerotic plaques, which occlude conduit arteries. Ischemic disease in different tissues leads to different conditions, such as coronary artery disease (CHD), cerebrovascular disease (CVD), and peripheral arterial occlusive disease (PAOD). Patient vasculature architecture is variable; some patients having many collateral vessels, which are connect one arterial branch to another, and readily serve as natural bypass routes to atherosclerotic occlusions, to enlarge and provide blood flow to tissue distal to the occlusion. Patients with many natural collateral vessels are ischemia protected. Unfortunately, not all patients have collateral arterioles to remodel into conduit vessels and provide ...


Shelf Life Study Of Electrospun Plga Copolymers, Sean Youra, Nick Hudson Jun 2013

Shelf Life Study Of Electrospun Plga Copolymers, Sean Youra, Nick Hudson

Biomedical Engineering

Poly(lactic-co-glycolic acid) (PLGA) is one of the most commonly used copolymers for electrospinning in tissue engineering applications. However, most research has not focused on the copolymer itself in regards to how long it can be used effectively and if varying the concentrations of polylactic acid (PLA) and polyglycolic acid (PGA) affect the resulting properties. Electrospinning is the method we use to create the three-dimensional constructs, or “scaffolds”, for the blood vessel mimic (BVM) in the tissue engineering lab. The aim of our project was to investigate if the morphology and mechanical properties of the scaffolds changed over time when ...


Matrix Remodeling Accompanies In Vitro Articular Cartilage Spherical Shaping, Nathan Thomas Balcom Jun 2013

Matrix Remodeling Accompanies In Vitro Articular Cartilage Spherical Shaping, Nathan Thomas Balcom

Master's Theses and Project Reports

Introduction: Articular cartilage (AC) is a low friction load bearing material found in synovial joints. The natural repair of damaged tissue is difficult and often requires surgical intervention. With large defects it becomes necessary to match the original tissue geometry. We hypothesized that localized collagen (COL) and/or proteoglycan (PG) remodeling occurs during AC spherical reshaping. The objective of this study was to determine the presence, magnitude and depth dependence of COL and PG remodeling that accompanies AC reshaping. Methods: Full thickness AC blocks (7x7 mm2 surface area) were harvested from the ridges of the patellofemoral groove of immature ...


Investigating The Reproducibility Of The Current Bvm Protocol, Corey Gross Mar 2013

Investigating The Reproducibility Of The Current Bvm Protocol, Corey Gross

Biomedical Engineering

Coronary Artery Disease (CAD) is responsible for 1 death every minute in the US. Angioplasty with the implantation of stents is a common treatment method for CAD. Although there is a variety of stents currently on the market, there is still a need to develop new types for different pathologic conditions. Preliminary assessment of the physiological response to new stents is needed as they are being developed. The FDA approval process implemented today is a long, tedious path with a range of testing methods that include static in vitro testing and high-cost animal testing. Tissue engineered blood vessels have been ...


Development Of In Vitro Tissue Engineered Blood Vessel Mimics In Complex Geometries For Coronary Stent Testing, Robert Dalton Chavez Jul 2012

Development Of In Vitro Tissue Engineered Blood Vessel Mimics In Complex Geometries For Coronary Stent Testing, Robert Dalton Chavez

Master's Theses and Project Reports

Coronary heart disease is the leading cause of death in the United States and occurs when plaque occludes coronary arteries. Coronary stents, which may be used to treat coronary occlusions, are small metal tubes that are implanted in coronary arteries to restore blood flow. After stent implantation, endothelial cells grow over the stent so that blood contacts the endothelial cells instead of the stent surface; this event is known as re-endothelialization. Re-endothelialization prevents blood from clotting on the stent surface and is a good predictor of stent success. Blood vessel mimics (BVMs) are in vitro tissue engineered models of human ...


Tissue Engineering A Blood Vessel Mimic While Monitoring Contamination Through Sterility Assurance Testing, Navid Djassemi Jul 2012

Tissue Engineering A Blood Vessel Mimic While Monitoring Contamination Through Sterility Assurance Testing, Navid Djassemi

Master's Theses and Project Reports

Tissue Engineering A Blood Vessel Mimic While Monitoring Contamination Through Sterility Assurance Testing

Navid Djassemi

Tissue engineering blood vessel mimics has been proposed as a method to analyze the endothelial cell response to intravascular devices that are used in today’s clinical settings for the treatment of cardiovascular disease. Thus, the development of in vitro blood vessel mimics (BVMs) in Cal Poly’s Tissue Engineering Lab has introduced the possibility of assessing the characteristics of cellular response to past, present, and future intravascular devices that aim at treating coronary artery disease.

This thesis aimed at improving the methods and procedures ...


Characterization Of Tight Junction Formation In An In-Vitro Model Of The Blood-Brain Barrier, Michael Robert Machado Jul 2012

Characterization Of Tight Junction Formation In An In-Vitro Model Of The Blood-Brain Barrier, Michael Robert Machado

Master's Theses and Project Reports

Active and passive transport of substances between the microcirculation in the brain and the central nervous system is regulated by the Blood-Brain Barrier (BBB). This barrier allows for chronic and acute modulation of the CNS microenvironment, and protects the brain from potentially noxious compounds carried in the circulatory system. In-vitro modeling of the BBB has become the target of much research over the past decade, as there are many unanswered questions regarding modulations in the permeability of this barrier. Additionally, the development of a practical and inexpensive model of the BBB would facilitate a much more efficient drug development process ...


Development And Characterization Of An In- House Custom Bioreactor For The Cultivation Of A Tissue Engineered Blood-Brain Barrier, Amin Hadi Mirzaaghaeian Jul 2012

Development And Characterization Of An In- House Custom Bioreactor For The Cultivation Of A Tissue Engineered Blood-Brain Barrier, Amin Hadi Mirzaaghaeian

Master's Theses and Project Reports

The development of treatments for neurological disorders such as Alzheimer’s and Parkinson’s disease begins by understanding what these diseases affect and the consequences of further manifestation. One particular region where these diseases can produce substantial problems is the blood-brain barrier (BBB). The BBB is the selective diffusion barrier between the circulating blood and the brain. The barrier’s main function is to maintain CNS homeostasis and protect the brain from the extracellular environment. The progression of BBB research has advanced to the point where many have modeled the BBB in vitro with aims of further characterizing and testing ...


Development And Characterization Of Plga And Eptfe Blood Vessel Mimics Using Gene Expression Analysis, Michael Gibbons, Sarah Ur Jun 2012

Development And Characterization Of Plga And Eptfe Blood Vessel Mimics Using Gene Expression Analysis, Michael Gibbons, Sarah Ur

Biomedical Engineering

Tissue engineered blood vessels (TEBV’s) have the potential to act not only as a replacement for diseased vessels, but also as a testing platform for intravascular devices such as stents. To this end, the goal of this study was to develop protocols for the construction of TEBV’s composed of human vascular cells and either expanded polytetrafluoroethylene (ePTFE) or poly-lactic-co-glycolic acid (PLGA), as well as a protocol for gene expression in those TEBV’s. Initial experiments involved only human umbilical vein endothelial cells (HUVEC’s), but after low cell confluency and spreading in single-sodded vessels a second cell type ...


Development Of A Protocol To Measure Gene Expression In The Mouse Tibia, Daniel Hoover Jun 2012

Development Of A Protocol To Measure Gene Expression In The Mouse Tibia, Daniel Hoover

Biomedical Engineering

Numerous molecular factors active in bone tissue direct fracture repair and remodeling which can be altered by disease conditions such as Peripheral Arterial Disease (PAD) and Osteoporosis. Methods of molecular biology are commonly applied to investigate the expression and role of these molecular factors. This project presents a robust three-step protocol for examining gene expression in the mouse tibia. The protocol begins with isolating RNA from a flash frozen tibia sample. The isolated RNA is reverse transcribed into cDNA. Finally, PCR is performed to indentify expressed genes. Establishing this protocol will allow further research into the mechanisms of bone remodeling ...


Viscoelastic Anisotropic Finite Element Mixture Model Of Articular Cartilage Using Viscoelastic Collagen Fibers And Validation With Stress Relaxation Data, Matthew Alexander Griebel Jun 2012

Viscoelastic Anisotropic Finite Element Mixture Model Of Articular Cartilage Using Viscoelastic Collagen Fibers And Validation With Stress Relaxation Data, Matthew Alexander Griebel

Master's Theses and Project Reports

Experimental results show that collagen fibers exhibit stress relaxation under tension and a highly anisotropic distribution. To further develop the earlier model of Stender [1], the collagen constituent was updated to reflect its intrinsic viscoelasticity and anisotropic distribution, and integrated with an existing mixture model with glycosaminoglycans and ground substance matrix. A two-term Prony series expansion of the quasi-linear viscoelastic model was chosen to model the viscoelastic properties of the collagen fibers. Material parameters were determined by using the simplex method to minimize the sum of squared errors between model results and experimental stress relaxation data of tissue in tension ...


Design Of Experimentation To Systematically Determine The Interaction Between Electrospinning Variables And To Optimize The Fiber Diameter Of Electrospun Poly (D,L-Lactide-Co-Glycolide) Scaffolds For Tissue Engineered Constructs, Yvette S. Castillo Jun 2012

Design Of Experimentation To Systematically Determine The Interaction Between Electrospinning Variables And To Optimize The Fiber Diameter Of Electrospun Poly (D,L-Lactide-Co-Glycolide) Scaffolds For Tissue Engineered Constructs, Yvette S. Castillo

Master's Theses and Project Reports

Cardiac disease causes approximately a third of the deaths in the United States. Furthermore, most of these deaths are due to a condition termed atherosclerosis, which is a buildup of plaque in the coronary arteries, leading to occlusion of normal blood flow to the cardiac muscle. Among the methods to treat the condition, stents are devices that are used to restore normal blood flow in the atherosclerotic arteries. Before advancement can be made to these devices and changes can be tested in live models, a reliable testing method that mimics the environment of the native blood vessel is needed. Dr ...


Evaluation Of Decellularization Procedures For Porcine Arteries, Charles Clapp Apr 2012

Evaluation Of Decellularization Procedures For Porcine Arteries, Charles Clapp

Biomedical Engineering

Coronary artery disease has become the leading cause of death in the United States, with over 425,000 deaths in 2006. Stenting has evolved into the preferred preventative technique for myocardial infarction by opening up an occluded artery, due to its low invasiveness compared to the alternative of coronary artery bypass grafting. Bare metal stents have been improved by coating with anti-proliferative drugs to advance their effects, but even drug eluting stents still have a risk of restenosis, thrombus formation, and necessary revascularization. Continual advancement in stent design necessitates faster, effective pre-clinical evaluation techniques. Kristen Cardinal, Ph.D., developed the ...


A Novel In-House Design Of A Bioreactor For The Modeling Of An In Vitro Blood Brain Barrier Model, Ian Mahaffey Jan 2012

A Novel In-House Design Of A Bioreactor For The Modeling Of An In Vitro Blood Brain Barrier Model, Ian Mahaffey

Biomedical Engineering

The blood brain barrier is the protector of the central nervous system and a physical barrier that functions to regulate the substances that can pass in and out of the brain; it is the function and integrity of this system that keeps the homeostasis of the central nervous system. Yet this shield against foreign invaders in the blood also prevents drugs designed for treatment of various ailments of the central nervous system from reaching their target in the brain. Developing drugs that can pass through this barrier, and understanding it’s function has become an area of increasing interest. Many ...


Impaired Resistance Artery Reactivity Following Arteriogenesis, Michael (Mike) Machado Sep 2011

Impaired Resistance Artery Reactivity Following Arteriogenesis, Michael (Mike) Machado

Biomedical Engineering

No abstract provided.


Protective Effects Of Milk Phospholipids Against Uv Photodamage In Human Skin Equivalents, Zyra Achay Sep 2011

Protective Effects Of Milk Phospholipids Against Uv Photodamage In Human Skin Equivalents, Zyra Achay

Master's Theses and Project Reports

The ultraviolet (UV) spectrum has been known to cause damage to skin in varying degrees. UVB radiation (290-320 nm) in particular, has been proven to be highly mutagenic and carcinogenic in many animal experiments compared to either UVA or UVC. The alarming rate of increase in skin cancer incidence has prompted many investigators to pursue other alternatives to sunscreens including changes in lifestyle habits and dietary consumption in order to boost our efforts in tackling this widespread disease. Previous studies employing confocal reflectance, MTT assay and histology suggest that milk phospholipids may possess protective properties against UVB-mediated damage but the ...


Determining A Method For Rendering Low Cost Cdse(Zns) Core(Shell) Quantum Dots Aqueous Soluble Via Amphiphilic Polymer Wrapping, Patrick Mcbride Jun 2011

Determining A Method For Rendering Low Cost Cdse(Zns) Core(Shell) Quantum Dots Aqueous Soluble Via Amphiphilic Polymer Wrapping, Patrick Mcbride

Materials Engineering

Herein is described the procedure of two amphiphilic polymer wrapping techniques that may be employed for obtaining aqueous soluble quantum dots (QDs) for use in biological fluorescent imaging applications. The advent of QDs has led to new nanoscale fluorescent materials that exhibit unparalleled quantum yields (QYs), high resistance to photobleaching, tunable emissions, and
absorption over a large optical range. However, the QD synthesis employed here at Cal Poly to obtain bright, photostable CdSe(ZnS) core(shell) QDs involves the use of organic solvents and surfactants, leading to hydrophobic QDs. Since all of biology relies on aqueous solubility, this hydrophobicity creates ...


Development Of An In-Vitro Hyperglycemic Tissue Engineered Blood Vessel Mimic, Brian C. Wong Jun 2011

Development Of An In-Vitro Hyperglycemic Tissue Engineered Blood Vessel Mimic, Brian C. Wong

Biomedical Engineering

No abstract provided.


Ischemia Impairs Vasodilation In Skeletal Muscle Resistance Artery, Kyle Remington Struthers Jun 2011

Ischemia Impairs Vasodilation In Skeletal Muscle Resistance Artery, Kyle Remington Struthers

Master's Theses and Project Reports

Functional vasodilation in arterioles is impaired with chronic ischemia. We sought to examine the impact of chronic ischemia and age on skeletal muscle resistance artery function. To examine the impact of chronic ischemia, the femoral artery was resected from young (2-3mo) and adult (6-7mo) mice and the profunda femoris artery diameter was measured at rest and following gracilis muscle contraction 14 days later using intravital microscopy. Functional vasodilation was significantly impaired in ischemic mice (14.4±4.6% vs. 137.8±14.3%, p<0.0001 n=8) and non-ischemic adult mice (103.0±9.4% vs. 137.8±14.3%, p=0.05 n=10). In order to analyze the cellular mechanisms of the impairment, a protocol was developed to apply pharmacological agents to the experimental preparation while maintaining tissue homeostasis. Endothelial and smooth muscle dependent vasodilation were impaired with ischemia, 39.6 ± 13.6% vs. 80.5 ± 11.4% and 43.0 ± 11.7% vs. 85.1 ± 10.5%, respectively. From this data, it can be supported that smooth muscle dysfunction is the reason for the observed impairment in arterial vasodilation.