Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biomedical Engineering and Bioengineering

Development Of A Programmable, Open-Source, And Cost-Effective Fluidic System For Cell Culture Applications, Charles Montoya Jul 2022

Development Of A Programmable, Open-Source, And Cost-Effective Fluidic System For Cell Culture Applications, Charles Montoya

Biomedical Engineering ETDs

Open-source laboratory equipment has become an increasingly popular alternative to commercially available options due to its simple implementation, capability of user-customized modifications, and cost-effectiveness. Presented here is the development of a programmable and open-source fluidic system comprised of three custom-built syringe pumps for cell culture applications. The fluidic system was directly integrated with a multiwell plate on an environmentally controlled microscope platform for live-cell imaging and time-lapse analyses of cellular responses as culture conditions are adjusted using the programmable fluidic system. Proof-of-concept of this system is obtained by controlling autophagic activity in A549 cells by adjustment of nutrient supply. The …


The Development Of An Instrument To Measure Transdermal Hydrogen Sulfide As A Way To Evaluate Microvascular Health In Humans, Benjamin Thomas Matheson Jul 2021

The Development Of An Instrument To Measure Transdermal Hydrogen Sulfide As A Way To Evaluate Microvascular Health In Humans, Benjamin Thomas Matheson

Biomedical Engineering ETDs

Hydrogen sulfide (H2S) is a gasotransmitter critical in maintaining microcirculation homeostasis. Impaired microcirculation occurs in multiple disease states such as peripheral vascular disease, diabetes mellitus (DM), and hypertension. Early detection and identification of patients with DM who are at risk for heart attack, stroke and amputation due to microvascular disease is crucial. Human skin is an accessible vascular bed that provides an opportunity to non-invasively measure H2S, which could be used as a biomarker to evaluate microvascular health.

In this work, a novel H2S gas sensor, called the transdermal arterial gasotransmitter sensor (TAGSTM …


Acoustofluidics And Soft Materials Interfaces For Biomedical Applications, Frank A. Fencl Nov 2018

Acoustofluidics And Soft Materials Interfaces For Biomedical Applications, Frank A. Fencl

Biomedical Engineering ETDs

This dissertation describes fabrication of devices and other tools for biomedical applications through the integration of acoustofluidic systems with bio separation assays, instrumentation components, and soft materials interfaces. For example, we engineer a new class of transparent acoustic flow chambers ideal for optical interrogation. We demonstrate efficacy of these devices by enhancing the signal for high throughput acoustic flow cytometry, capable of robust particle focusing across multiple parallel flowing streams. We also investigate an automated sampling system to determine the parameters of transient particle stream focusing in between sample boluses and air bubbles to model a high throughput, multi-sampling acoustic …


Developing Droplet Based 3d Cell Culture Methods To Enable Investigations Of The Chemical Tumor Microenvironment, Jacqueline A. De Lora Jul 2018

Developing Droplet Based 3d Cell Culture Methods To Enable Investigations Of The Chemical Tumor Microenvironment, Jacqueline A. De Lora

Biomedical Sciences ETDs

Adaptation of cancer cells to changes in the biochemical microenvironment in an expanding tumor mass is a crucial aspect of malignant progression, tumor metabolism, and drug efficacy. In vitro, it is challenging to mimic the evolution of biochemical gradients and the cellular heterogeneity that characterizes cancer tissues found in vivo. It is well accepted that more realistic and controllable in vitro 3D model systems are required to improve the overall cancer research paradigm and thus improve on the translation of results, but multidisciplinary approaches are needed for these advances. This work develops such approaches and demonstrates that new droplet-based cell-encapsulation …


Development Of Biomimetic Membrane Assemblies On Microspheres For High-Throughput And Multiplexable Studies, Nadiezda P. Fernandez Oropeza Nov 2017

Development Of Biomimetic Membrane Assemblies On Microspheres For High-Throughput And Multiplexable Studies, Nadiezda P. Fernandez Oropeza

Biomedical Engineering ETDs

Membranes and membrane-associated components are the target of approximately 60% of the current drugs, of synthetic materials, such as polymers, which are used for drug delivery purposes and of other biomolecules, such as endotoxins, which gain entry into the cell by disrupting the membrane. Therefore, the development of biomimetic membrane assemblies allows the study of different biological processes in which cell membranes play an important role, and the characterization and screening of drug delivery tools and other membrane-bound components.

Since its development, membrane assemblies on planar silica surfaces have been the method of choice to study membrane-associated and membrane-bound components. …