Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biomedical Engineering and Bioengineering

A Portable And Automatic Biosensing Instrument For Detection Of Foodborne Pathogenic Bacteria In Food Samples, Zhuo Zhao Dec 2016

A Portable And Automatic Biosensing Instrument For Detection Of Foodborne Pathogenic Bacteria In Food Samples, Zhuo Zhao

Graduate Theses and Dissertations

Foodborne diseases are a growing public health problem. In recent years, many rapid detection methods have been reported, but most of them are still in lab research and not practical for use in the field. In this study, a portable and automatic biosensing instrument was designed and constructed for separation and detection of target pathogens in food samples using nanobead-based magnetic separation and quantum dots (QDs)-labeled fluorescence measurement. The instrument consisted of a laptop with LabVIEW software, a data acquisition card (DAQ), a fluorescent detector, micro-pumps, stepper motors, and 3D printed tube holders. First, a sample in a syringe was …


Design Of A 3d-Printed Device For Diffuse Reflectance Spectroscopy Calibration As A Step Towards Clinical Translation, Nontapoth Vongkittiargorn May 2016

Design Of A 3d-Printed Device For Diffuse Reflectance Spectroscopy Calibration As A Step Towards Clinical Translation, Nontapoth Vongkittiargorn

Biomedical Engineering Undergraduate Honors Theses

The diffusive reflectance and spectroscopic microendoscopy (DRSME) is a multimodal imaging system that harnesses its usefulness from different light sources. One of the modalities, diffuse reflectance spectroscopy (DRS), has been used in our lab to investigate optical properties of epithelial tissues using a broadband white light as the main source. Calibration of DRS is required as it can obtain the maximum intensity and convert it to absolute reflectance. Current manual-adjusted calibration can be lengthy and often lead to inconsistent results. Therefore, a new method of calibration is introduced where additive manufacturing (or 3D printing) technology is fully utilized.

The instrumentation …


Validation Of A Confocal Light Sheet Microscope Using Push Broom Translation For Biomedical Applications, Joshua Hutcheson May 2016

Validation Of A Confocal Light Sheet Microscope Using Push Broom Translation For Biomedical Applications, Joshua Hutcheson

Graduate Theses and Dissertations

There exists a need for research of optical methods capable of image cytometry suitable for point-of-care technology. To propose am optical approach with no moving parts for simplification of mechanical components for the further development of the technology to the poin-of-care, a linear sensor with push broom translation method. Push broom translation is a method of moving objects by the sensor for an extended field of view. A polydimethylsiloxane (PDMS) microfluidic chamber with a syringe pump was used to deliver objects by the sensor. The volumetric rate of the pump was correlated to the integration time of the sensor to …


Intravital Microscopy Of Tumor Oxygenation And Glycolytic Demand, Jesse D. Ivers May 2016

Intravital Microscopy Of Tumor Oxygenation And Glycolytic Demand, Jesse D. Ivers

Biomedical Engineering Undergraduate Honors Theses

There is growing concern about the over treatment of cancer because treatments are based primarily on tumor anatomy. In this study, we aim to begin the process of addressing that issue by developing an intravital technique for optically analyzing tumor biology. Two traits were identified as having significant importance in the aggression of a tumor, vascular oxygenation (SO2) and glycolytic demand. Dorsal skin flap window chambers were implanted and 4T1 and 67NR cancer cells were injected to provide a tumor model for the development of this intravital quantification technique. This study provides a detailed protocol from instrumentation setup to surgical …


Localized Immunotherapy Delivery Using Injectable In Situ Forming Chitosan Hydrogel, Seth Washispack May 2016

Localized Immunotherapy Delivery Using Injectable In Situ Forming Chitosan Hydrogel, Seth Washispack

Biomedical Engineering Undergraduate Honors Theses

Cytokine-based cancer immunotherapies stimulate a host’s immune system to fight cancer. In particular, interleukin-12 (IL-12), a potent pro-inflammatory cytokine, has demonstrated the ability to eliminate tumors in a number of preclinical models. Toxicities associated with the systemic delivery of IL-12 have precluded its use in the clinic. We are developing a novel chitosan-based hydrogel to maintain high local concentrations of cytokines, such as IL-12, in the tumor while minimizing its systemic dissemination. This hydrogel was found to form spontaneously within ten seconds of mixing two proprietary components. To increase the usefulness of the hydrogel, an efficient mixing and delivery system …