Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Biomedical Engineering and Bioengineering

Characterizing Mechanical Regulation Of Bone Metastatic Breast Cancer Cells, Boyuan Liu Mar 2022

Characterizing Mechanical Regulation Of Bone Metastatic Breast Cancer Cells, Boyuan Liu

Doctoral Dissertations

Breast cancer most frequently metastasizes to the skeleton. Bone metastatic cancer is incurable and induces wide-spread bone osteolysis, resulting in significant patient morbidity and mortality. Mechanical stimuli in the skeleton are an important microenvironmental parameter that modulates tumor formation, osteolysis, and tumor cell-bone cell signaling, but which mechanical signals are the most beneficial and the corresponding molecular mechanisms are unknown. This work focused on bone matrix deformation and interstitial fluid flow based on their well-known roles in bone remodeling and in primary breast cancer. The goal of our research was to establish a platform that could define the relationship between …


A Novel Intervention To Prevent Post-Traumatic Osteoarthritis Following Knee Joint Injury, Gerardo E. Narez Oct 2021

A Novel Intervention To Prevent Post-Traumatic Osteoarthritis Following Knee Joint Injury, Gerardo E. Narez

Doctoral Dissertations

The knee joint is the most commonly injured body part in the human body. Injuries as a result of participation in sports, or other recreational activities, often leads to damage to the anterior cruciate ligament (ACL) and meniscus. Injury to these tissues is strongly associated with subsequent knee post-traumatic osteoarthritis (PTOA), which is considered a serious disease because it greatly impacts a patient’s quality of life and significantly increases their risk of premature death. To return stability to the joint, the current clinical treatment is to perform reconstruction of the torn ACL and a meniscal debridement, or meniscectomy, when needed. …


A Generalized Method For Predictive Simulation-Based Lower Limb Prosthesis Design, Mark Price Apr 2021

A Generalized Method For Predictive Simulation-Based Lower Limb Prosthesis Design, Mark Price

Doctoral Dissertations

Lower limb prostheses are designed to replace the functions and form of the missing biological anatomy. These functions are hypothesized to improve user outcome measures which are negatively affected by receiving an amputation – such as metabolic cost of transport, preferred walking speed, and perceived discomfort during walking. However, the effect of these design functions on the targeted outcome measures is highly variable, suggesting that these relationships are not fully understood. Biomechanics simulation and modeling tools are increasingly capable of analyzing the effects of a design on the resulting user gait. In this work, prothesis-aided gait is optimized in simulation …


Predictive Simulation Of Human Movement And Applications To Assistive Device Design And Control, Vinh Nguyen Nov 2019

Predictive Simulation Of Human Movement And Applications To Assistive Device Design And Control, Vinh Nguyen

Doctoral Dissertations

Predictive simulation based on dynamic optimization using musculoskeletal models is a powerful approach for studying biomechanics of human gait. Predictive simulation can be used for a variety of applications from designing assistive devices to testing theories of motor controls. However, one of the challenges in formulating the predictive dynamic optimization problem is that the cost function, which represents the underlying goal of the walking task (e.g., minimal energy consumption) is generally unknown and is assumed a priori. While different studies used different cost functions, the qualities of the gaits with those cost functions were often not provided. Therefore, this dissertation …


Analyses Of Densely Crosslinked Phenolic Systems Using Low Field Nmr, Jigneshkumar Patel Nov 2017

Analyses Of Densely Crosslinked Phenolic Systems Using Low Field Nmr, Jigneshkumar Patel

Doctoral Dissertations

A uniform dispersion of reactants is necessary to achieve a complete reaction involving multi-components, especially for the crosslinking of rigid high-performance materials. In these reactions, miscibility is crucial for curing efficiency. This miscibility is typically enhanced by adding a third component, a plasticizer. For the reaction of the highly crystalline crosslinking agent hexamethylenetetramine (HMTA) with a strongly hydrogen-bonded phenol formaldehyde resin, furfural has been traditionally used as the plasticizer. However, the reason for its effectiveness is not clear. In this doctoral thesis work, miscibility and crosslinking efficiency of plasticizers in phenolic curing reactions are studied by thermal analysis and spectroscopic …


Tissue-Guided Engineering Of Polyethylene Glycol Hydrogels, Lauren Jansen Nov 2017

Tissue-Guided Engineering Of Polyethylene Glycol Hydrogels, Lauren Jansen

Doctoral Dissertations

Polyethylene glycol (PEG) hydrogels are tunable cell culture platforms that recapitulate tissue geometry, water content, and bulk modulus. Despite these benefits, PEG hydrogels elicit an acute immune response, limiting their use in regenerative medicine, and they critically underrepresent the cell-instructive proteins found in the extracellular matrix (ECM). Here, I developed a new class of tissue-specific PEG-based materials and provided biocompatible strategies to improve the user handling and cell viability post-encapsulation when using these hydrogels. I also demonstrated that decreasing the protein fouling to PEG does not decrease the foreign body response to implanted hydrogels, a common misconception in the field. …


Effects Of Malformed Or Absent Valves To Lymphatic Fluid Transport And Lymphedema In Vivo In Mice, Akshay S. Pujari Oct 2017

Effects Of Malformed Or Absent Valves To Lymphatic Fluid Transport And Lymphedema In Vivo In Mice, Akshay S. Pujari

Masters Theses

Lymph is primarily composed of fluid and proteins from the blood circulatory system that drain into the space surrounding cells, interstitial space. From the interstitial space, the fluid enters and circulates in the lymphatic system until it is delivered into the venous system. In contrast to the blood circulatory system, the lymphatic system lacks a central pumping organ dictating the predominant driving pressure and velocity of lymph. Transport of lymph via capillaries, pre-collecting and collecting lymphatic vessels relies on the synergy between pressure gradients, local tissue motion, valves and lymphatic vessel contractility. The direction of lymph transport is regulated by …


Multi-Classifier Fusion Strategy For Activity And Intent Recognition Of Torso Movements, Abhijit Kadrolkar Nov 2016

Multi-Classifier Fusion Strategy For Activity And Intent Recognition Of Torso Movements, Abhijit Kadrolkar

Doctoral Dissertations

As assistive, wearable robotic devices are being developed to physically assist their users, it has become crucial to develop safe, reliable methods to coordinate the device with the intentions and motions of the wearer. This dissertation investigates the recognition of user intent during flexion and extension of the human torso in the sagittal plane to be used for control of an assistive exoskeleton for the human torso. A multi-sensor intent recognition approach is developed that combines information from surface electromyogram (sEMG) signals from the user’s muscles and inertial sensors mounted on the user’s body. Intent recognition is implemented by following …


A Continous Rotary Actuation Mechanism For A Powered Hip Exoskeleton, Matthew C. Ryder Jul 2015

A Continous Rotary Actuation Mechanism For A Powered Hip Exoskeleton, Matthew C. Ryder

Masters Theses

This thesis presents a new mechanical design for an exoskeleton actuator to power the sagittal plane motion in the human hip. The device uses a DC motor to drive a Scotch yoke mechanism and series elasticity to take advantage of the cyclic nature of human gait and to reduce the maximum power and control requirements of the exoskeleton. The Scotch yoke actuator creates a position-dependent transmission that varies between 4:1 and infinity, with the peak transmission ratio aligned to the peak torque periods of the human gait cycle. Simulation results show that both the peak and average motor torque can …


Were Neandertal Humeri Adapted For Spear Thrusting Or Throwing? A Finite Element Study, Michael Anthony Berthaume Nov 2014

Were Neandertal Humeri Adapted For Spear Thrusting Or Throwing? A Finite Element Study, Michael Anthony Berthaume

Masters Theses

An ongoing debate concerning Neandertal ecology is whether or not they utilized long range weaponry. The anteroposteriorly expanded cross-section of Neandertal humeri have led some to argue they thrusted their weapons, while the rounder cross-section of Late Upper Paleolithic modern human humeri suggests they threw their weapons. We test the hypothesis that Neandertal humeri were built to resist strains engendered by thrusting rather than throwing using finite element models of one Neandertal, one Early Upper Paleolithic (EUP) human and three recent human humeri, representing a range of cross-sectional shapes and sizes. Electromyography and kinematic data and articulated skeletons were used …


Tooth Cusp Radius Of Curvature As A Dietary Correlate In Primates, Michael Anthony Berthaume Sep 2013

Tooth Cusp Radius Of Curvature As A Dietary Correlate In Primates, Michael Anthony Berthaume

Open Access Dissertations

Tooth cusp radius of curvature (RoC) has been hypothesized to play an important role in food item breakdown, but has remained largely unstudied due to difficulties in measuring and modeling RoC in multicusped teeth. We tested these hypotheses using a parametric model of a four cusped, maxillary, bunodont molar in conjunction with finite element analysis. When our data failed to support existing hypotheses, we put forth and tested the Complex Cusp Hypothesis which states that, during brittle food items breakdown, an optimally shaped molar would be maximizing stresses in the food item while minimizing stresses in the enamel. After gaining …