Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Biomechanics and Biotransport

California Polytechnic State University, San Luis Obispo

Baseball

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Youth Pitching Kinematics: Associations With Body Overweight Parameters, Christina K. Fong Mar 2022

Youth Pitching Kinematics: Associations With Body Overweight Parameters, Christina K. Fong

Master's Theses

The objective of this study was to investigate associations between injury-related kinematic parameters and overweight measures for youth baseball pitchers. The injury-related kinematic parameters considered were measurements 1) at foot contact: stride length, front foot position, shoulder external rotation, shoulder abduction, and elbow flexion; 2) between FC and ball release: peak knee extension; and 3) at BR: shoulder abduction. Data from three separate collection sites examined pitching mechanics of 18 10- to 11-year-old pitchers, 11 14- to 16-year-old pitchers, and 104 16- to 18-year-old pitchers Linear regression analyses were performed to determine significant correlations between kinematic parameters and body mass …


Smartphone-Tape Method For Calculating Body Segment Inertial Parameters For Analysis Of Pitching Arm Kinetics, Jay Sterner Jun 2020

Smartphone-Tape Method For Calculating Body Segment Inertial Parameters For Analysis Of Pitching Arm Kinetics, Jay Sterner

Master's Theses

The objectives of this study were to (1) develop a non-invasive method (referred to as Smart Photo-Tape) to calculate participant-specific upper arm, forearm, and hand segment inertial properties (SIPs) (e.g. mass, center of mass, and radii of gyration) and (2) use those Smart Photo-Tape properties in inverse dynamics (ID) analyses to calculate injury-related pitching arm kinetics. Five 20- to 23- year-old baseball pitchers were photographed holding a baseball and analyzed using the Smart Photo-Tape method to obtain 3-D inertial properties for their upper arm, forearm, and hand. The upper arm and forearm segments were modelled as stacked elliptic cylinders and …