Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Bioimaging and Biomedical Optics

2018

Institution
Keyword
Publication

Articles 1 - 24 of 24

Full-Text Articles in Biomedical Engineering and Bioengineering

Basis Vector Model Method For Proton Stopping Power Estimation Using Dual-Energy Computed Tomography, Shuangyue Zhang Dec 2018

Basis Vector Model Method For Proton Stopping Power Estimation Using Dual-Energy Computed Tomography, Shuangyue Zhang

McKelvey School of Engineering Theses & Dissertations

Accurate estimation of the proton stopping power ratio (SPR) is important for treatment planning and dose prediction for proton beam therapy. The state-of-the-art clinical practice for estimating patient-specific SPR distributions is the stoichiometric calibration method using single-energy computed tomography (SECT) images, which in principle may introduce large intrinsic uncertainties into estimation results. One major factor that limits the performance of SECT-based methods is the Hounsfield unit (HU) degeneracy in the presence of tissue composition variations. Dual-energy computed tomography (DECT) has shown the potential of reducing uncertainties in proton SPR prediction via scanning the patient with two different source energy spectra. …


Radiolabeled Nanohydroxyapatite As A Platform For The Development Of New Pet Imaging Agents, Stacy Lee Queern Dec 2018

Radiolabeled Nanohydroxyapatite As A Platform For The Development Of New Pet Imaging Agents, Stacy Lee Queern

Arts & Sciences Electronic Theses and Dissertations

Positron emission tomography (PET) imaging utilizes drugs labeled with positron emitters to target and evaluate different biological processes occurring in the body. Tailoring medicine to the individual allows for higher quality of care with better diagnosis and treatment and is a key purpose for advancing research into developing new platforms for PET imaging agents. A PET nuclide of high interest for the development of these agents is 89Zr. This can be attributed to the long half-life of 3.27 days and low positron energy of 89Zr.

In this work, we developed a production method for 89Zr using Y sputtered coins that …


Morphological Features Of Dysplastic Progression In Epithelium: Quantification Of Cytological, Microendoscopic, And Second Harmonic Generation Images, Sandra Patricia Gordon Dec 2018

Morphological Features Of Dysplastic Progression In Epithelium: Quantification Of Cytological, Microendoscopic, And Second Harmonic Generation Images, Sandra Patricia Gordon

Graduate Theses and Dissertations

Advances in imaging technology have led to a variety of available clinical and investigational systems. In this collection of studies, we tested the relevance of morphological image feature quantification on several imaging systems and epithelial tissues. Quantification carries the benefit of creating numerical baselines and thresholds of healthy and abnormal tissues, to potentially aid clinicians in determining a diagnosis, as well as providing researchers with standardized, unbiased results for future dissemination and comparison.

Morphological image features in proflavine stained oral cells were compared qualitatively to traditional Giemsa stained cells, and then we quantified the nuclear to cytoplasm ratio. We determined …


Hyperspectral Imaging For Characterizing Single Plasmonic Nanostructure And Single-Cell Analysis, Nishir Sanatkumar Mehta Oct 2018

Hyperspectral Imaging For Characterizing Single Plasmonic Nanostructure And Single-Cell Analysis, Nishir Sanatkumar Mehta

LSU Master's Theses

Orientation of plasmonic nanostructures is an important feature in many nanoscale applications such as photovoltaics, catalyst, biosensors DNA interactions, protein detections, hotspot of surface-enhanced Raman spectroscopy (SERS), and fluorescence resonant energy transfer (FRET) experiments. Silver nanocubes with significant spectral signatures between 400-700 nm are observed in this experimental research. Whereas study of single cells will enable the analysis of cell-to-cell variations within a heterogeneous population. These variations are important for further analysis and understanding of disease propagation, drug development, stem cell differentiation, embryos development, and how cells respond to each other and their environment. Adipose-derived mesenchymal stem cells possess the …


In Vivo Vascular Imaging With Photoacoustic Microscopy, Hsun-Chia Hsu Aug 2018

In Vivo Vascular Imaging With Photoacoustic Microscopy, Hsun-Chia Hsu

McKelvey School of Engineering Theses & Dissertations

Photoacoustic (PA) tomography (PAT) has received extensive attention in the last decade for its capability to provide label-free structural and functional imaging in biological tissue with highly scalable spatial resolution and penetration depth. Compared to modern optical modalities, PAT offers speckle-free images and is more sensitive to optical absorption contrast (with 100% relative sensitivity). By implementing different regimes of optical wavelength, PAT can be used to image diverse light-absorbing biomolecules. For example, hemoglobin is of particular interest in the visible wavelength regime owing to its dominant absorption, and lipids and water are more commonly studied in the near-infrared regime.

In …


Developing Droplet Based 3d Cell Culture Methods To Enable Investigations Of The Chemical Tumor Microenvironment, Jacqueline A. De Lora Jul 2018

Developing Droplet Based 3d Cell Culture Methods To Enable Investigations Of The Chemical Tumor Microenvironment, Jacqueline A. De Lora

Biomedical Sciences ETDs

Adaptation of cancer cells to changes in the biochemical microenvironment in an expanding tumor mass is a crucial aspect of malignant progression, tumor metabolism, and drug efficacy. In vitro, it is challenging to mimic the evolution of biochemical gradients and the cellular heterogeneity that characterizes cancer tissues found in vivo. It is well accepted that more realistic and controllable in vitro 3D model systems are required to improve the overall cancer research paradigm and thus improve on the translation of results, but multidisciplinary approaches are needed for these advances. This work develops such approaches and demonstrates that new droplet-based cell-encapsulation …


New Algorithms For Compressed Sensing Of Mri: Wtwts, Dwts, Wdwts, Srivarna Settisara Janney Jun 2018

New Algorithms For Compressed Sensing Of Mri: Wtwts, Dwts, Wdwts, Srivarna Settisara Janney

Master of Science in Computer Science Theses

Magnetic resonance imaging (MRI) is one of the most accurate imaging techniques that can be used to detect several diseases, where other imaging methodologies fail. MRI data takes a longer time to capture. This is a pain taking process for the patients to remain still while the data is being captured. This is also hard for the doctor as well because if the images are not captured correctly then it will lead to wrong diagnoses of illness that might put the patients lives in danger. Since long scanning time is one of most serious drawback of the MRI modality, reducing …


Submandibular Mechanical Stimulation Of Upper Airway Muscles To Treat Obstructive Sleep Apnea, Ferhat Erdogan May 2018

Submandibular Mechanical Stimulation Of Upper Airway Muscles To Treat Obstructive Sleep Apnea, Ferhat Erdogan

Dissertations

The extrinsic tongue muscles are activated in coordination with pharyngeal muscles to keep a patent airway during respiration in wakefulness and sleep. The activity of genioglossus, the primary tongue-protruding muscle playing an important role in this coordination, is known to be modulated by several reflex pathways mediated through the mechanoreceptors of the upper airways. The main objective is to investigate the effectiveness of activating these reflex pathways with mechanical stimulations, for the long-term goal of improving the upper airway patency during disordered breathing in sleep. The genioglossus response is examined during mandibular and sub-mandibular mechanical stimulations in healthy subjects during …


Developing Photoacoustic Tomography Devices For Translational Medicine And Basic Science Research, Tsz Wai Wong May 2018

Developing Photoacoustic Tomography Devices For Translational Medicine And Basic Science Research, Tsz Wai Wong

McKelvey School of Engineering Theses & Dissertations

Photoacoustic (PA) tomography (PAT) provides volumetric images of biological tissue with scalable spatial resolutions and imaging depths, while preserving the same imaging contrast—optical absorption. Taking the advantage of its 100% sensitivity to optical absorption, PAT has been widely applied in structural, functional, and molecular imaging, with both endogenous and exogenous contrasts, at superior depths than pure optical methods. Intuitively, hemoglobin has been the most commonly studied biomolecule in PAT due to its strong absorption in the visible wavelength regime.

One of the main focuses of this dissertation is to investigate an underexplored wavelength regime—ultraviolet (UV), which allows us to image …


Developing Wavefront Shaping Techniques For Focusing Through Highly Dynamic Scattering Media, Ashton Hemphill May 2018

Developing Wavefront Shaping Techniques For Focusing Through Highly Dynamic Scattering Media, Ashton Hemphill

McKelvey School of Engineering Theses & Dissertations

One of the prime limiting factors of optical imaging in biological applications is the diffusion of light by tissue, which prevents focusing at depths greater than the optical diffusion limit of ~1 mm in soft tissue. This greatly restricts the utility of optical diagnostic and therapeutic techniques, such as optogenetics, microsurgery, optical tweezing, and phototherapy of deep tissue, which require focused light in order to function. Wavefront shaping extends the depth at which optical focusing may be achieved by compensating for phase distortions induced by scattering, allowing for focusing through constructive interference.

However, due to physiological motion, scattering of light …


Fluorescence Guided Tumor Imaging: Foundations For Translational Applications, Jessica P. Miller May 2018

Fluorescence Guided Tumor Imaging: Foundations For Translational Applications, Jessica P. Miller

McKelvey School of Engineering Theses & Dissertations

Optical imaging for medical applications is a growing field, and it has the potential to improve medical outcomes through its increased sensitivity and specificity, lower cost, and small instrumentation footprint as compared to other imaging modalities. The method holds great promise, ranging from direct clinical use as a diagnostic or therapeutic tool, to pre-clinical applications for increased understanding of pathology. Additionally, optical imaging uses non-ionizing radiation which is safe for patients, so it can be used for repeated imaging procedures to monitor therapy, guide treatment, and provide real-time feedback. The versatile features of fluorescence-based optical imaging make it suited for …


A Study Of Acoustically Activated Nanodroplets, Songita Choudhury May 2018

A Study Of Acoustically Activated Nanodroplets, Songita Choudhury

Theses & Dissertations

Current treatment of acute myocardial infarction (AMI), which is the main pathophysiological event leading to death in the United States, has advanced considerably with the introduction of emergent percutaneous interventions, but there remains an urgent need for novel techniques to rapidly and accurately detect infarcted or ischemic tissue that results from AMI. Ultrasound contrast agents, also known as microbubbles (MB), have become commonplace in echocardiography. However, MBs are purely intravascular tracers and unable to cross endothelial barriers due to size. The limitations of MBs, namely size and short circulation times within the human body, led to the development of phase-change …


Extraction And Analysis Of Vector Flow Imaging Data In A Pediatric Population, Bailey Stinnett May 2018

Extraction And Analysis Of Vector Flow Imaging Data In A Pediatric Population, Bailey Stinnett

Biomedical Engineering Undergraduate Honors Theses

Vector flow imaging (VFI) is a new ultrasound technology that provides real time, angle-independent visualization of flow velocities in the heart and great vessels. Thus far, VFI has been used for superficial applications due to the limited penetration depth of available transducer probes; however, this depth in smaller pediatric patients enables adequate aortic views. In this project, VFI was used to study pediatric aortic stenosis (PAS)—a congenital heart defect that results in the narrowing of the aorta and/or aortic valve. The decision to refer PAS patients for surgical or catheter-based intervention is initially based on Doppler ultrasound. VFI is potentially …


Comparison Of Varying Tissue Freezing Methods On Murine Colonic Tissue, James Hughes May 2018

Comparison Of Varying Tissue Freezing Methods On Murine Colonic Tissue, James Hughes

Biomedical Engineering Undergraduate Honors Theses

Histology often requires a tissue specimen to be embedded so that it may be sectioned, stained, and mounted on a microscope slide for viewing. One common method of tissue embedding for rapid histology is freezing, since freezing allows tissue to be stored without the need for fixing. Frozen tissue is often embedded in a medium such as Optimal Cutting Temperature (OCT) compound so that it can be sectioned using a cryostat. However, factors such as ice-crystal formation during the freezing process can cause damage to the tissue. As such, the protocol used to freeze the tissue can affect the quality …


Quantification Of Tumor-Associated Macrophages Following Immunomodulation Therapy In A Murine Allograft Model Of Colorectal Carcinoma, Caroline Spainhour May 2018

Quantification Of Tumor-Associated Macrophages Following Immunomodulation Therapy In A Murine Allograft Model Of Colorectal Carcinoma, Caroline Spainhour

Biomedical Engineering Undergraduate Honors Theses

Colorectal Carcinoma (CRC) is one of the deadliest cancers in the world, with 150,000 new cases annually in the United States. Traditional treatments include chemotherapy and invasive surgery; however, research has shown that only 25% of patients that undergo traditional treatment have a positive result. Immunotherapy is an emerging form of cancer treatment that utilizes the patients’immune system to fight cancer cells by targeting inflammation, which plays a large role in the proliferation and metastasis of cancer cells.

Tumor-associated macrophages (TAMs) are immune cells that affect the inflammatory microenvironment of tumors. TAMs are M1 in the early stages of tumors, …


An Area Based Fan Beam Projection Model, Richard E. Steele, Jiehua Zhu Apr 2018

An Area Based Fan Beam Projection Model, Richard E. Steele, Jiehua Zhu

Honors College Theses

Area based projection models for computed tomography mitigate raw data errors by treating X-Rays as beams, whereas traditional line based projection models treat an X-Ray like a line, thus generating significant error. In an existing area based fan beam projection model, a rotation matrix, Q, simulates the rotation of the emitter detector pair to reduce computational load, but this introduces approximations by using an approximated rotation matrix. We eliminate approximations by deriving an exact formula for the entries of Q. Using a rotation of axes and by considering the neighboring cells' contributions to the area, the result has formulations for …


Characterization Of Computed Tomography Radiomic Features Using Texture Phantoms, Muhammad Shafiq Ul Hassan Apr 2018

Characterization Of Computed Tomography Radiomic Features Using Texture Phantoms, Muhammad Shafiq Ul Hassan

USF Tampa Graduate Theses and Dissertations

Radiomics treats images as quantitative data and promises to improve cancer prediction in radiology and therapy response assessment in radiation oncology. However, there are a number of fundamental problems that need to be solved in order to potentially apply radiomic features in clinic. The first basic step in computed tomography (CT) radiomic analysis is the acquisition of images using selectable image acquisition and reconstruction parameters. Radiomic features have shown large variability due to variation of these parameters. Therefore, it is important to develop methods to address these variability issues in radiomic features due to each CT parameter. To this end, …


Optimization Of Microfluidic Chip Fabrication Via Femtosecond Laser Ablation, Kenneth Aycock Apr 2018

Optimization Of Microfluidic Chip Fabrication Via Femtosecond Laser Ablation, Kenneth Aycock

Senior Theses

Microfluidic devices have become staple tools in biomedical research and have a promising future as low cost, point-of-care (POC) diagnostic devices. Despite the advancements in microfluidic device technology, the manipulation and fabrication of these systems can be tedious and expensive. Repeatable techniques in which computer-aided designs are translated into microfluidic systems in a matter of minutes are highly desirable both for researchers and manufacturers. Laser ablation of tape substrates has shown promise in producing cost-effective, rapidly manipulable devices, but the work done thus far has utilized continuous wave lasers that perform suboptimally due to the relatively short wavelengths used and …


Automatic Brain Tumor Segmentation By Deep Convolutional Networks And Graph Cuts, Zhenyi Wang Jan 2018

Automatic Brain Tumor Segmentation By Deep Convolutional Networks And Graph Cuts, Zhenyi Wang

Electronic Thesis and Dissertation Repository

Brain tumor segmentation in magnetic resonance imaging (MRI) is helpful for diagnostics, growth rate prediction, tumor volume measurements and treatment planning of brain tumor. The difficulties for brain tumor segmentation are mainly due to high variation of brain tumors in size, shape, regularity, location, and their heterogeneous appearance (e.g., contrast, intensity and texture variation for different tumors). Due to recent advances in deep convolutional neural networks for semantic image segmentation, automatic brain tumor segmentation is a promising research direction.

This thesis investigates automatic brain tumor segmentation by combining deep convolutional neural network with regularization by a graph cut. We investigate …


Study Of Mri Signal In The Presence Of Discrete Spherical Magnetic Particles, Paul Kokeny Jan 2018

Study Of Mri Signal In The Presence Of Discrete Spherical Magnetic Particles, Paul Kokeny

Wayne State University Dissertations

Simulating signal behavior in Magnetic Resonance imaging (MRI) is often a necessary step in being able to understand how signal relates to certain physiological parameters. One such parameter of interest in the body is magnetic susceptibility since it is related to iron content. The bulk magnetic susceptibility of an object is a property that describes how magnetized it becomes when placed in an external magnetic field. When the bulk susceptibility of an object arises from the presence of discrete magnetic inclusions, the MRI phase signal inside the object can no longer be determined analytically by assuming it has a continuous …


Multimodal Noncontact Diffuse Optical Reflectance Imaging Of Blood Flow And Fluorescence Contrasts, Daniel Irwin Jan 2018

Multimodal Noncontact Diffuse Optical Reflectance Imaging Of Blood Flow And Fluorescence Contrasts, Daniel Irwin

Theses and Dissertations--Biomedical Engineering

In this study we design a succession of three increasingly adept diffuse optical devices towards the simultaneous 3D imaging of blood flow and fluorescence contrasts in relatively deep tissues. These metrics together can provide future insights into the relationship between blood flow distributions and fluorescent or fluorescently tagged agents. A noncontact diffuse correlation tomography (ncDCT) device was firstly developed to recover flow by mechanically scanning a lens-based apparatus across the sample. The novel flow reconstruction technique and measuring boundary curvature were advanced in tandem. The establishment of CCD camera detection with a high sampling density and flow recovery by speckle …


The Effects Of Emerging Technology On Healthcare And The Difficulties Of Integration, Skyler J. Pavlish-Carpenter Jan 2018

The Effects Of Emerging Technology On Healthcare And The Difficulties Of Integration, Skyler J. Pavlish-Carpenter

Honors Undergraduate Theses

Background: Disruptive technology describes technology that is significantly more advanced than previous iterations, such as: 3D printing, genetic manipulation, stem cell research, innovative surgical procedures, and computer-based charting software. These technologies often require extensive overhauls to implement into older systems and must overcome many difficult financial and societal complications before they can be widely used. In a field like healthcare that makes frequent advancements, these difficulties can mean that the technology will not be utilized to its full potential or implemented at all.

Objective: To determine the inhibiting factors that prevent disruptive technology from being implemented in conventional healthcare.

Methods: …


Experimental And Model-Based Terahertz Imaging And Spectroscopy For Mice, Human, And Phantom Breast Cancer Tissues, Tyler Bowman Jan 2018

Experimental And Model-Based Terahertz Imaging And Spectroscopy For Mice, Human, And Phantom Breast Cancer Tissues, Tyler Bowman

Graduate Theses and Dissertations

The goal of this work is to investigate terahertz technology for assessing the surgical margins of breast tumors through electromagnetic modeling and terahertz experiments. The measurements were conducted using a pulsed terahertz system that provides time and frequency domain signals. Three types of breast tissues were investigated in this work. The first was formalin-fixed, paraffin-embedded tissues from human infiltrating ductal and lobular carcinomas. The second was human tumors excised within 24-hours of lumpectomy or mastectomy surgeries. The third was xenograft and transgenic mice breast cancer tumors grown in a controlled laboratory environment to achieve more data for statistical analysis.

Experimental …


Design And Development Of A Compact X-Ray Tube For Stationary Ct Architecture, Ashish Vighnahar Avachat Jan 2018

Design And Development Of A Compact X-Ray Tube For Stationary Ct Architecture, Ashish Vighnahar Avachat

Doctoral Dissertations

"Multisource architectures enable sweeping one or more x-ray beams across the imaging field-of-view faster than physically moving a single x-ray source and/or a detector. Hence, these architectures are attractive for the applications in which temporal resolution plays an important role, for example, cardiac computed tomography (CT) or real-time CT. One of the recent developments in multisource architectures for CT imaging is stationary CT architecture, whereby two separate stationary arrays -- one for x-ray sources and one for detectors -- are utilized to sweep one or more x-ray beams along the gantry and acquire 360 degree projections. To have a stationary …