Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Machine learning

Discipline
Institution
Publication Year
Publication

Articles 1 - 27 of 27

Full-Text Articles in Biomedical Engineering and Bioengineering

Data-Driven And Cell-Specific Determination Of Nuclei-Associated Actin Structure, Nina Nikitina, Nurbanu Bursa, Matthew Goelzer, Madison Goldfeldt, Chase Crandall, Sean Howard, Janet Rubin, Anamaria Zavala, Aykut Satici, Gunes Uzer May 2024

Data-Driven And Cell-Specific Determination Of Nuclei-Associated Actin Structure, Nina Nikitina, Nurbanu Bursa, Matthew Goelzer, Madison Goldfeldt, Chase Crandall, Sean Howard, Janet Rubin, Anamaria Zavala, Aykut Satici, Gunes Uzer

Mechanical and Biomedical Engineering Faculty Publications and Presentations

Quantitative volumetric assessment of filamentous actin (F-actin) fibers remains challenging due to their interconnected nature, leading researchers to utilize threshold-based or qualitative measurement methods with poor reproducibility. Herein, a novel machine learning-based methodology is introduced for accurate quantification and reconstruction of nuclei-associated F-actin. Utilizing a convolutional neural network (CNN), actin filaments and nuclei from 3D confocal microscopy images are segmented and then each fiber is reconstructed by connecting intersecting contours on cross-sectional slices. This allows measurement of the total number of actin filaments and individual actin filament length and volume in a reproducible fashion. Focusing on the role of F-actin …


Correlation Enhanced Distribution Adaptation For Prediction Of Fall Risk, Ziqi Guo, Teresa Wu, Thurmon Lockhart, Rahul Soangra, Hyunsoo Yoon Feb 2024

Correlation Enhanced Distribution Adaptation For Prediction Of Fall Risk, Ziqi Guo, Teresa Wu, Thurmon Lockhart, Rahul Soangra, Hyunsoo Yoon

Physical Therapy Faculty Articles and Research

With technological advancements in diagnostic imaging, smart sensing, and wearables, a multitude of heterogeneous sources or modalities are available to proactively monitor the health of the elderly. Due to the increasing risks of falls among older adults, an early diagnosis tool is crucial to prevent future falls. However, during the early stage of diagnosis, there is often limited or no labeled data (expert-confirmed diagnostic information) available in the target domain (new cohort) to determine the proper treatment for older adults. Instead, there are multiple related but non-identical domain data with labels from the existing cohort or different institutions. Integrating different …


Can We Explain Machine Learning-Based Prediction For Rupture Status Assessments Of Intracranial Aneurysms?, Nan Mu, M. Rezaeitaleshmahalleh, Z. Lyu, M. Wang, J. Tang, C. M. Strother, J. J. Gemmete, A. S. Pandey, J. Jiang Mar 2023

Can We Explain Machine Learning-Based Prediction For Rupture Status Assessments Of Intracranial Aneurysms?, Nan Mu, M. Rezaeitaleshmahalleh, Z. Lyu, M. Wang, J. Tang, C. M. Strother, J. J. Gemmete, A. S. Pandey, J. Jiang

Michigan Tech Publications

Although applying machine learning (ML) algorithms to rupture status assessment of intracranial aneurysms (IA) has yielded promising results, the opaqueness of some ML methods has limited their clinical translation. We presented the first explainability comparison of six commonly used ML algorithms: multivariate logistic regression (LR), support vector machine (SVM), random forest (RF), extreme gradient boosting (XGBoost), multi-layer perceptron neural network (MLPNN), and Bayesian additive regression trees (BART). A total of 112 IAs with known rupture status were selected for this study. The ML-based classification used two anatomical features, nine hemodynamic parameters, and thirteen morphologic variables. We utilized permutation feature importance, …


Cardio-Net: A Matlab-Based Software For The Display And Diagnostic Utilization Of Vectorcardiograms, Ali H. Mannaa, Domenico Gatti Jun 2022

Cardio-Net: A Matlab-Based Software For The Display And Diagnostic Utilization Of Vectorcardiograms, Ali H. Mannaa, Domenico Gatti

Medical Student Research Symposium

Background: The 12-lead technique is the standard in ECG, however alternate cardiography modalities such as vectorcardiography (VCG) exist . While the VCG modality offers unique clinical metrics and certain advantages over ECG, it is hardly utilized due to it being more difficult to obtain than ECG. Here we introduce Cardio-Net, a MATLAB-based software that uses standard 12-lead ECG data to generate and visualize VCGs. Furthermore, we demonstrate the diagnostic potential of VCG by utilizing a recurrent neural network (RNN) to accurately classify vectorcardiograms.

Methods: MATLAB version 2019b and the following toolboxes were used for data processing: Deep learning, …


Analysis Of Rule-Based And Shallow Statistical Models For Covid-19 Cough Detection For A Preliminary Diagnosis, Arshia Arif, Eisa Alanazi, Ayesha Zeb, Waqar Shahid Qureshi May 2022

Analysis Of Rule-Based And Shallow Statistical Models For Covid-19 Cough Detection For A Preliminary Diagnosis, Arshia Arif, Eisa Alanazi, Ayesha Zeb, Waqar Shahid Qureshi

Conference papers

Coronavirus pandemic that has spread all over the world, is one of its kind in the recent past, that has mobilized researchers in areas such as (not limited to) pre-screening solutions, contact tracing, vaccine developments, and crowd estimation. Pre-screening using symptoms identification, cough classification, and contact tracing mobile applications gained significant popularity during the initial outbreak of the pandemic. Audio recordings of coughing individuals are one of the sources that can help in the pre-screening of COVID-19 patients. This research focuses on quantitative analysis of covid cough classification using audio recordings of coughing individuals. For analysis, we used three different …


Volitional Control Of Lower-Limb Prosthesis With Vision-Assisted Environmental Awareness, S M Shafiul Hasan Mar 2022

Volitional Control Of Lower-Limb Prosthesis With Vision-Assisted Environmental Awareness, S M Shafiul Hasan

FIU Electronic Theses and Dissertations

Early and reliable prediction of user’s intention to change locomotion mode or speed is critical for a smooth and natural lower limb prosthesis. Meanwhile, incorporation of explicit environmental feedback can facilitate context aware intelligent prosthesis which allows seamless operation in a variety of gait demands. This dissertation introduces environmental awareness through computer vision and enables early and accurate prediction of intention to start, stop or change speeds while walking. Electromyography (EMG), Electroencephalography (EEG), Inertial Measurement Unit (IMU), and Ground Reaction Force (GRF) sensors were used to predict intention to start, stop or increase walking speed. Furthermore, it was investigated whether …


Part I - Ai And Data As Medical Devices, W. Nicholson Price Ii Jan 2022

Part I - Ai And Data As Medical Devices, W. Nicholson Price Ii

Other Publications

It may seem counterintuitive to open a book on medical devices with chapters on software and data, but these are the frontiers of new medical device regulation and law. Physical devices are still crucial to medicine, but they – and medical practice as a whole – are embedded in and permeated by networks of software and caches of data. Those software systems are often mindbogglingly complex and largely inscrutable, involving artificial intelligence and machine learning. Ensuring that such software works effectively and safely remains a substantial challenge for regulators and policymakers. Each of the three chapters in this part examines …


Pairwise Correlation Analysis Of The Alzheimer’S Disease Neuroimaging Initiative (Adni) Dataset Reveals Significant Feature Correlation, Erik D. Huckvale, Matthew W. Hodgman, Brianna B. Greenwood, Devorah O. Stucki, Katrisa M. Ward, Mark T. W. Ebbert, John S. K. Kauwe, The Alzheimer’S Disease Neuroimaging Initiative, The Alzheimer’S Disease Metabolomics Consortium, Justin B. Miller Oct 2021

Pairwise Correlation Analysis Of The Alzheimer’S Disease Neuroimaging Initiative (Adni) Dataset Reveals Significant Feature Correlation, Erik D. Huckvale, Matthew W. Hodgman, Brianna B. Greenwood, Devorah O. Stucki, Katrisa M. Ward, Mark T. W. Ebbert, John S. K. Kauwe, The Alzheimer’S Disease Neuroimaging Initiative, The Alzheimer’S Disease Metabolomics Consortium, Justin B. Miller

Sanders-Brown Center on Aging Faculty Publications

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) contains extensive patient measurements (e.g., magnetic resonance imaging [MRI], biometrics, RNA expression, etc.) from Alzheimer’s disease (AD) cases and controls that have recently been used by machine learning algorithms to evaluate AD onset and progression. While using a variety of biomarkers is essential to AD research, highly correlated input features can significantly decrease machine learning model generalizability and performance. Additionally, redundant features unnecessarily increase computational time and resources necessary to train predictive models. Therefore, we used 49,288 biomarkers and 793,600 extracted MRI features to assess feature correlation within the ADNI dataset to determine the …


Breast Cancer Detection From Histopathology Images Using Machine Learning Techniques: A Bibliometric Analysis, Shubhangi A. Joshi, Anupkumar M. Bongale Dr., Arunkumar M. Bongale Dr. May 2021

Breast Cancer Detection From Histopathology Images Using Machine Learning Techniques: A Bibliometric Analysis, Shubhangi A. Joshi, Anupkumar M. Bongale Dr., Arunkumar M. Bongale Dr.

Library Philosophy and Practice (e-journal)

Computer aided diagnosis has become upcoming area of research over past few years. With the advent of machine learning and especially deep learning techniques, the scenario of work flow management in healthcare sector is changing drastically. Artificial intelligence has shown potential in the field of breast cancer care. With datasets for machine learning frameworks getting eventually richer with time, we can definitely get newer insights in the field of breast cancer care. This will help in narrowing down the treatment range for patients and increasing patient survivability. The purpose of this study was to perform bibliometric analysis of the literature …


Development Of A Real-Time Single-Lead Single-Beat Frequency-Independent Myocardial Infarction Detector, Harold Martin Mar 2021

Development Of A Real-Time Single-Lead Single-Beat Frequency-Independent Myocardial Infarction Detector, Harold Martin

FIU Electronic Theses and Dissertations

The central aim of this research is the development and deployment of a novel multilayer machine learning design with unique application for the diagnosis of myocardial infarctions (MIs) from individual heartbeats of single-lead electrocardiograms (EKGs) irrespective of their sampling frequencies over a given range. To the best of our knowledge, this design is the first to attempt inter-patient myocardial infarction detection from individual heartbeats of single-lead (lead II) electrocardiograms that achieves high accuracy and near real-time diagnosis. The processing time of 300 milliseconds to a diagnosis is just at the time range in between extremely fast heartbeats of around 300 …


Real-Time Control Of A Virtual Hand Using Surface Electromyography, Nathan Griffin, Alexander Kobilnyk Jan 2021

Real-Time Control Of A Virtual Hand Using Surface Electromyography, Nathan Griffin, Alexander Kobilnyk

Summer Scholarship, Creative Arts and Research Projects (SCARP)

Most multi-articulate prostheses allow the user to control the prosthesis through a range of pre-determined grip patterns with fixed force outputs. Although these pre-determined movements can make the prosthesis more reliable, user commands are limited to these grips and cannot be controlled naturally in real-time. Using surface electromyography (sEMG) and a modified Kalman Filter, upper limb amputees can intuitively control arm prostheses with independent, proportional control. We created an inexpensive sleeve of 32, dry sEMG electrodes (plus reference and ground) and built a graphical user interface in Matlab to train and control an 8 degree-of-freedom virtual arm (MuJoCo, Roboti). First, …


Machine Learning Approaches For Fracture Risk Assessment: A Comparative Analysis Of Genomic And Phenotypic Data In 5130 Older Men, Qing Wu, Fatma Nasoz, Jongyun Jung, Bibek Bhattarai, Mira V. Han Jul 2020

Machine Learning Approaches For Fracture Risk Assessment: A Comparative Analysis Of Genomic And Phenotypic Data In 5130 Older Men, Qing Wu, Fatma Nasoz, Jongyun Jung, Bibek Bhattarai, Mira V. Han

Public Health Faculty Publications

The study aims were to develop fracture prediction models by using machine learning approaches and genomic data, as well as to identify the best modeling approach for fracture prediction. The genomic data of Osteoporotic Fractures in Men, cohort Study (n = 5130), were analyzed. After a comprehensive genotype imputation, genetic risk score (GRS) was calculated from 1103 associated Single Nucleotide Polymorphisms for each participant. Data were normalized and split into a training set (80%) and a validation set (20%) for analysis. Random forest, gradient boosting, neural network, and logistic regression were used to develop prediction models for major osteoporotic fractures …


Automatic Detection Of Dynamic And Static Activities Of The Older Adults Using A Wearable Sensor And Support Vector Machines, Jian Zhang, Rahul Soangra, Thurmon E. Lockhart Jul 2020

Automatic Detection Of Dynamic And Static Activities Of The Older Adults Using A Wearable Sensor And Support Vector Machines, Jian Zhang, Rahul Soangra, Thurmon E. Lockhart

Physical Therapy Faculty Articles and Research

Although Support Vector Machines (SVM) are widely used for classifying human motion patterns, their application in the automatic recognition of dynamic and static activities of daily life in the healthy older adults is limited. Using a body mounted wireless inertial measurement unit (IMU), this paper explores the use of an SVM approach for classifying dynamic (walking) and static (sitting, standing and lying) activities of the older adults. Specifically, data formatting and feature extraction methods associated with IMU signals are discussed. To evaluate the performance of the SVM algorithm, the effects of two parameters involved in SVM algorithm—the soft margin constant …


A Convolutional Neural Network For Fast Fluence Estimation In Complex Tissues, Nicholas Blasey, Geoffrey P. Luke Jun 2020

A Convolutional Neural Network For Fast Fluence Estimation In Complex Tissues, Nicholas Blasey, Geoffrey P. Luke

ENGS 88 Honors Thesis (AB Students)

Photoacoustic (PA) imaging is a non-invasive diagnostic imaging technique that gives images of photoabsorbers based on their absorption of optical energy. These optical absorption properties can then be linked to important tissue properties. For the method to be quantitative, however, it is necessary to have an accurate estimation of the light fluence in the tissue. The current gold standard in addressing the fluence estimation problem, a Monte Carlo Simulation, is costly in time and computation. In this work, we developed a deep neural network to quickly and accurately estimate light fluence in arbitrary tissue types and geometries. The network was …


Ml-Medic: A Preliminary Study Of An Interactive Visual Analysis Tool Facilitating Clinical Applications Of Machine Learning For Precision Medicine, Laura Stevens, David Kao, Jennifer Hall, Carsten Görg, Kaitlyn Abdo, Erik Linstead May 2020

Ml-Medic: A Preliminary Study Of An Interactive Visual Analysis Tool Facilitating Clinical Applications Of Machine Learning For Precision Medicine, Laura Stevens, David Kao, Jennifer Hall, Carsten Görg, Kaitlyn Abdo, Erik Linstead

Engineering Faculty Articles and Research

Accessible interactive tools that integrate machine learning methods with clinical research and reduce the programming experience required are needed to move science forward. Here, we present Machine Learning for Medical Exploration and Data-Inspired Care (ML-MEDIC), a point-and-click, interactive tool with a visual interface for facilitating machine learning and statistical analyses in clinical research. We deployed ML-MEDIC in the American Heart Association (AHA) Precision Medicine Platform to provide secure internet access and facilitate collaboration. ML-MEDIC’s efficacy for facilitating the adoption of machine learning was evaluated through two case studies in collaboration with clinical domain experts. A domain expert review was also …


Identification And Analysis Of Behavioral Phenotypes In Autism Spectrum Disorder Via Unsupervised Machine Learning, Elizabeth Stevens, Dennis R. Dixon, Marlena N. Novack, Doreen Granpeesheh, Tristram Smith, Erik Linstead May 2019

Identification And Analysis Of Behavioral Phenotypes In Autism Spectrum Disorder Via Unsupervised Machine Learning, Elizabeth Stevens, Dennis R. Dixon, Marlena N. Novack, Doreen Granpeesheh, Tristram Smith, Erik Linstead

Engineering Faculty Articles and Research

Background and objective: Autism spectrum disorder (ASD) is a heterogeneous disorder. Research has explored potential ASD subgroups with preliminary evidence supporting the existence of behaviorally and genetically distinct subgroups; however, research has yet to leverage machine learning to identify phenotypes on a scale large enough to robustly examine treatment response across such subgroups. The purpose of the present study was to apply Gaussian Mixture Models and Hierarchical Clustering to identify behavioral phenotypes of ASD and examine treatment response across the learned phenotypes.

Materials and methods: The present study included a sample of children with ASD (N = 2400), …


Seeing Eye To Eye: A Machine Learning Approach To Automated Saccade Analysis, Maigh Attre May 2019

Seeing Eye To Eye: A Machine Learning Approach To Automated Saccade Analysis, Maigh Attre

Honors Scholar Theses

Abnormal ocular motility is a common manifestation of many underlying pathologies particularly those that are neurological. Dynamics of saccades, when the eye rapidly changes its point of fixation, have been characterized for many neurological disorders including concussions, traumatic brain injuries (TBI), and Parkinson’s disease. However, widespread saccade analysis for diagnostic and research purposes requires the recognition of certain eye movement parameters. Key information such as velocity and duration must be determined from data based on a wide set of patients’ characteristics that may range in eye shapes and iris, hair and skin pigmentation [36]. Previous work on saccade analysis has …


An Elastic-Net Logistic Regression Approach To Generate Classifiers And Gene Signatures For Types Of Immune Cells And T Helper Cell Subsets, Arezo Torang, Paraag Gupta, David J. Klinke Ii Jan 2019

An Elastic-Net Logistic Regression Approach To Generate Classifiers And Gene Signatures For Types Of Immune Cells And T Helper Cell Subsets, Arezo Torang, Paraag Gupta, David J. Klinke Ii

Faculty & Staff Scholarship

Background: Host immune response is coordinated by a variety of different specialized cell types that vary in time and location. While host immune response can be studied using conventional low-dimensional approaches, advances in transcriptomics analysis may provide a less biased view. Yet, leveraging transcriptomics data to identify immune cell subtypes presents challenges for extracting informative gene signatures hidden within a high dimensional transcriptomics space characterized by low sample numbers with noisy and missing values. To address these challenges, we explore using machine learning methods to select gene subsets and estimate gene coefficients simultaneously. Results: Elastic-net logistic regression, a type of …


Design Of A Distributed Real-Time E-Health Cyber Ecosystem With Collective Actions: Diagnosis, Dynamic Queueing, And Decision Making, Yanlin Zhou May 2018

Design Of A Distributed Real-Time E-Health Cyber Ecosystem With Collective Actions: Diagnosis, Dynamic Queueing, And Decision Making, Yanlin Zhou

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In this thesis, we develop a framework for E-health Cyber Ecosystems, and look into different involved actors. The three interested parties in the ecosystem including patients, doctors, and healthcare providers are discussed in 3 different phases. In Phase 1, machine-learning based modeling and simulation analysis is performed to remotely predict a patient's risk level of having heart diseases in real time. In Phase 2, an online dynamic queueing model is devised to pair doctors with patients having high risk levels (diagnosed in Phase 1) to confirm the risk, and provide help. In Phase 3, a decision making paradigm is proposed …


Biomedical Informatics Applications For Precision Management Of Neurodegenerative Diseases, Justin B. Miller, Guogen Shan, Joseph Lombardo, Gustavo Jimenez-Maggoria Jan 2018

Biomedical Informatics Applications For Precision Management Of Neurodegenerative Diseases, Justin B. Miller, Guogen Shan, Joseph Lombardo, Gustavo Jimenez-Maggoria

Public Health Faculty Publications

Modern medicine is in the midst of a revolution driven by “big data,” rapidly advancing computing power, and broader integration of technology into healthcare. Highly detailed and individualized profiles of both health and disease states are now possible, including biomarkers, genomic profiles, cognitive and behavioral phenotypes, high-frequency assessments, and medical imaging. Although these data are incredibly complex, they can potentially be used to understand multi-determinant causal relationships, elucidate modifiable factors, and ultimately customize treatments based on individual parameters. Especially for neurodegenerative diseases, where an effective therapeutic agent has yet to be discovered, there remains a critical need for an interdisciplinary …


Early Emerging Pathogen Detection, Mackenzie Wangenstein Jan 2018

Early Emerging Pathogen Detection, Mackenzie Wangenstein

Undergraduate Research & Mentoring Program

A supervised learning technique was employed to identify emerging pathogen species. Portland State University has partnered with the University of New Mexico to take encodings of unknown pathogen molecular structures to determine emerging species.


Pattern Discovery In Brain Imaging Genetics Via Scca Modeling With A Generic Non-Convex Penalty, Lei Du, Kefei Liu, Xiaohui Yao, Jingwen Yan, Shannon L. Risacher, Junwei Han, Lei Guo, Andrew J. Saykin, Li Shen, Michael W. Weiner, Paul Aisen, Ronald Petersen, Clifford R. Jack, William Jagust, John Q. Trojanowki, Arthur W. Toga, Laurel Beckett, Robert C. Green, John Morris, Leslie M. Shaw, Zaven Khachaturian, Greg Sorensen, Maria Carrillo, Lew Kuller, Marc Raichle, Steven Paul, Peter Davies, Howard Fillit, Franz Hefti, David Holtzman, Charles D. Smith, Gregory Jicha, Peter A. Hardy, Partha Sinha, Elizabeth Oates, Gary Conrad Oct 2017

Pattern Discovery In Brain Imaging Genetics Via Scca Modeling With A Generic Non-Convex Penalty, Lei Du, Kefei Liu, Xiaohui Yao, Jingwen Yan, Shannon L. Risacher, Junwei Han, Lei Guo, Andrew J. Saykin, Li Shen, Michael W. Weiner, Paul Aisen, Ronald Petersen, Clifford R. Jack, William Jagust, John Q. Trojanowki, Arthur W. Toga, Laurel Beckett, Robert C. Green, John Morris, Leslie M. Shaw, Zaven Khachaturian, Greg Sorensen, Maria Carrillo, Lew Kuller, Marc Raichle, Steven Paul, Peter Davies, Howard Fillit, Franz Hefti, David Holtzman, Charles D. Smith, Gregory Jicha, Peter A. Hardy, Partha Sinha, Elizabeth Oates, Gary Conrad

Neurology Faculty Publications

Brain imaging genetics intends to uncover associations between genetic markers and neuroimaging quantitative traits. Sparse canonical correlation analysis (SCCA) can discover bi-multivariate associations and select relevant features, and is becoming popular in imaging genetic studies. The L1-norm function is not only convex, but also singular at the origin, which is a necessary condition for sparsity. Thus most SCCA methods impose 1-norm onto the individual feature or the structure level of features to pursuit corresponding sparsity. However, the 1-norm penalty over-penalizes large coefficients and may incurs estimation bias. A number of non-convex penalties are proposed to reduce …


An Automated Workflow For Quantifying Rna Transcripts In Individual Cells In Large Data-Sets, Matthew C. Pharris, Tzu-Ching Wu, Xinping Chen, Xu Wang, David M. Umulis, Vikki M. Weake, Tamara L. Kinzer-Ursem Sep 2017

An Automated Workflow For Quantifying Rna Transcripts In Individual Cells In Large Data-Sets, Matthew C. Pharris, Tzu-Ching Wu, Xinping Chen, Xu Wang, David M. Umulis, Vikki M. Weake, Tamara L. Kinzer-Ursem

Weldon School of Biomedical Engineering Faculty Publications

Advanced molecular probing techniques such as single molecule fluorescence in situ hybridization (smFISH) or RNAscope can be used to assess the quantity and spatial location of mRNA transcripts within cells. Quantifying mRNA expression in large image sets usually involves automated counting of fluorescent spots. Though conventional spot counting algorithms may suffice, they often lack high-throughput capacity and accuracy in cases of crowded signal or excessive noise. Automatic identification of cells and processing of many images is still a challenge. We have developed a method to perform automatic cell boundary identification while providing quantitative data about mRNA transcript levels across many …


Eeg Spectral Changes Before And After An Eight-Week Intervention Period Of Preksha Meditation, Chintan Joshi Nov 2016

Eeg Spectral Changes Before And After An Eight-Week Intervention Period Of Preksha Meditation, Chintan Joshi

FIU Electronic Theses and Dissertations

Various types of meditation techniques, primarily categorized into concentrative and mindfulness meditation, have evolved over the years to enhance the physiological and psychological well-being of people in all walks of life. However, the scientific knowledge of the impact of meditation on physiological and psychological well-being is very limited. Electroencephalography (EEG) was used to study the effect of a sequence of different forms of Preksha meditation on brain activity. EEG data from 13 novice participants (10 females, 3 males; Age: 19-49 yrs) were collected while meditating for the first time (pre) and at the end of an eight week (post) intervention …


Comparing Machine Learning And Logistic Regression Methods For Predicting Hypertension Using A Combination Of Gene Expression And Next-Generation Sequencing Data, Elizabeth Held, Joshua Cape, Nathan L. Tintle Oct 2016

Comparing Machine Learning And Logistic Regression Methods For Predicting Hypertension Using A Combination Of Gene Expression And Next-Generation Sequencing Data, Elizabeth Held, Joshua Cape, Nathan L. Tintle

Faculty Work Comprehensive List

Machine learning methods continue to show promise in the analysis of data from genetic association studies because of the high number of variables relative to the number of observations. However, few best practices exist for the application of these methods. We extend a recently proposed supervised machine learning approach for predicting disease risk by genotypes to be able to incorporate gene expression data and rare variants. We then apply 2 different versions of the approach (radial and linear support vector machines) to simulated data from Genetic Analysis Workshop 19 and compare performance to logistic regression. Method performance was not radically …


A Comparative Study Of Two Prediction Models For Brain Tumor Progression, Deqi Zhou, Loc Tran, Jihong Wang, Jiang Li, Karen O. Egiazarian (Ed.), Sos S. Agaian (Ed.), Atanas P. Gotchev (Ed.) Jan 2015

A Comparative Study Of Two Prediction Models For Brain Tumor Progression, Deqi Zhou, Loc Tran, Jihong Wang, Jiang Li, Karen O. Egiazarian (Ed.), Sos S. Agaian (Ed.), Atanas P. Gotchev (Ed.)

Electrical & Computer Engineering Faculty Publications

MR diffusion tensor imaging (DTI) technique together with traditional T1 or T2 weighted MRI scans supplies rich information sources for brain cancer diagnoses. These images form large-scale, high-dimensional data sets. Due to the fact that significant correlations exist among these images, we assume low-dimensional geometry data structures (manifolds) are embedded in the high-dimensional space. Those manifolds might be hidden from radiologists because it is challenging for human experts to interpret high-dimensional data. Identification of the manifold is a critical step for successfully analyzing multimodal MR images.

We have developed various manifold learning algorithms (Tran et al. 2011; Tran et al. …


Prediction Of Brain Tumor Progression Using Multiple Histogram Matched Mri Scans, Debrup Banerjee, Loc Tran, Jiang Li, Yuzhong Shen, Frederic Mckenzie, Jihong Wang, Ronald M. Summers (Ed.), Bram Van Ginneken (Ed.) Jan 2011

Prediction Of Brain Tumor Progression Using Multiple Histogram Matched Mri Scans, Debrup Banerjee, Loc Tran, Jiang Li, Yuzhong Shen, Frederic Mckenzie, Jihong Wang, Ronald M. Summers (Ed.), Bram Van Ginneken (Ed.)

Electrical & Computer Engineering Faculty Publications

In a recent study [1], we investigated the feasibility of predicting brain tumor progression based on multiple MRI series and we tested our methods on seven patients' MRI images scanned at three consecutive visits A, B and C. Experimental results showed that it is feasible to predict tumor progression from visit A to visit C using a model trained by the information from visit A to visit B. However, the trained model failed when we tried to predict tumor progression from visit B to visit C, though it is clinically more important. Upon a closer look at the MRI scans …