Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Stability Analysis Of A More General Class Of Systems With Delay-Dependent Coefficients, Chi Jin, Keqin Gu, Islam Boussaada, Silviu-Iulian Niculescu May 2019

Stability Analysis Of A More General Class Of Systems With Delay-Dependent Coefficients, Chi Jin, Keqin Gu, Islam Boussaada, Silviu-Iulian Niculescu

SIUE Faculty Research, Scholarship, and Creative Activity

This paper presents a systematic method to analyse the stability of systems with single delay in which the coefficient polynomials of the characteristic equation depend on the delay. Such systems often arise in, for example, life science and engineering systems. A method to analyze such systems was presented by Beretta and Kuang in a 2002 paper, but with some very restrictive assumptions. This work extends their results to the general case with the exception of some degenerate cases. It is found that a much richer behavior is possible when the restrictive assumptions are removed. The interval of interest for the …


Computational And Performance Analysis Of A Continuous Magnetophoretic Bioseparation Chip With Alternating Magnetic Fields, Matin Golozar, Majid Molki, Jeff Darabi Mar 2017

Computational And Performance Analysis Of A Continuous Magnetophoretic Bioseparation Chip With Alternating Magnetic Fields, Matin Golozar, Majid Molki, Jeff Darabi

SIUE Faculty Research, Scholarship, and Creative Activity

This paper presents the modeling and optimization of a magnetophoretic bioseparation chip for isolating cells, such as circulating tumor cells from the peripheral blood. The chip consists of a continuous-flow microfluidic platform that contains locally engineered magnetic field gradients. The high-gradient magnetic field produced by the magnets is spatially non-uniform and gives rise to an attractive force on magnetic particles flowing through a fluidic channel. Simulations of the particle–fluid transport and the magnetic force are performed to predict the trajectories and capture lengths of the particles within the fluidic channel. The computational model takes into account key forces, such as …


Continuous Isolation Of Monocytes Using A Magnetophoretic-Based Microfluidic Chip, Jeff Darabi, Chuan Guo Aug 2016

Continuous Isolation Of Monocytes Using A Magnetophoretic-Based Microfluidic Chip, Jeff Darabi, Chuan Guo

SIUE Faculty Research, Scholarship, and Creative Activity

Monocytes play an important role in the immune system and are responsible for phagocytizing and degrading foreign microorganisms in the body. The isolation of monocytes is important in various immunological applications such as in-vitro culture of dendritic cells. We present a magnetophoretic-based microfluidic chip for rapid isolation of highly purified, untouched monocytes from human blood by a negative selection method. This bioseparation platform integrates several unique features into a microfluidic device, including locally engineered magnetic field gradients and a continuous flow with a buffer switching scheme to improve the performance of the cell separation process. The results indicate high monocyte …