Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Utilization Of Finite Element Analysis Techniques For Adolescent Idiopathic Scoliosis Surgical Planning, Michael A. Polanco Aug 2022

Utilization Of Finite Element Analysis Techniques For Adolescent Idiopathic Scoliosis Surgical Planning, Michael A. Polanco

Mechanical & Aerospace Engineering Theses & Dissertations

Adolescent Idiopathic Scoliosis, a three-dimensional deformity of the thoracolumbar spine, affects approximately 1-3% of patients ages 10-18. Surgical correction and treatment of the spinal column is a costly and high-risk task that is consistently complicated by factors such as patient-specific spinal deformities, curve flexibility, and surgeon experience. The following dissertation utilizes finite element analysis to develop a cost-effective, building-block approach by which surgical procedures and kinematic evaluations may be investigated. All studies conducted are based off a volumetric, thoracolumbar finite element (FE) model developed from computer-aided design (CAD) anatomy whose components are kinematically validated with in-vitro data. Spinal ligament stiffness …


The Effect Of Soft Tissue And Bone Morphology On The Stresses In The Foot And Ankle, Jinhyuk Kim Aug 2022

The Effect Of Soft Tissue And Bone Morphology On The Stresses In The Foot And Ankle, Jinhyuk Kim

Mechanical & Aerospace Engineering Theses & Dissertations

The foot and ankle interface with the ground, thus they absorb reaction forces and initiate load distribution through the body. The plantar fascia (PF) is a flexible structure that absorbs reaction forces and distributes loading across the foot. It is frequently a source of foot pain especially when people have plantar fasciitis and/or diabetes mellitus. Finite element (FE) models of the foot and ankle were created to examine the function however, the plantar fascia is frequently modeled as a 1D tension only spring, which does not represent variations caused by injury and/or disease.

As models move toward being patient specific, …