Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Biomedical Engineering and Bioengineering

Improving The Stimulation Selectivity In The Human Cochlea By Strategic Selection Of The Current Return Electrode, Ozan Cakmak Dec 2022

Improving The Stimulation Selectivity In The Human Cochlea By Strategic Selection Of The Current Return Electrode, Ozan Cakmak

Dissertations

The hearing quality provided by cochlear implants are poorly predicted by computer simulations. A realistic cochlear anatomy is crucial for the accuracy of predictions. In this study, the standard multipolar stimulation paradigms are revisited and Rattay’s Activating Function is evaluated in a finite element model of a realistic cochlear geometry that is based on µ-CT images and a commercial lead. The stimulation thresholds across the cochlear fibers were investigated for monopolar, bipolar, tripolar, and a novel (distant) bipolar electrode configuration using an active compartmental nerve model based on Schwartz-Eikhof-Frijns membrane dynamics. The results suggest that skipping of the stimulation point …


Predicting Surgical Outcome In Patients With Recurrent Patellar Dislocation, Dario De Caro Aug 2022

Predicting Surgical Outcome In Patients With Recurrent Patellar Dislocation, Dario De Caro

Boise State University Theses and Dissertations

Introduction

Lateral dislocation of the patella is a common injury in active adolescents and young adults. Patients who are ultimately managed surgically have a significantly lower risk of recurrent dislocation. However, determining the optimal surgical treatment remains a challenge, with patients sometimes undergoing multiple surgeries prior to successful stabilization. The aim of this study is to computationally evaluate patients that have undergone multiple surgeries to correct for recurrent lateral patellar dislocation and predict their clinical outcome.

Methods

Our patient cohort consisted of 16 patients with patella dislocation. Patient-specific imaging were used to create three-dimensional (3D) finite element (FE) models of …


Utilization Of Finite Element Analysis Techniques For Adolescent Idiopathic Scoliosis Surgical Planning, Michael A. Polanco Aug 2022

Utilization Of Finite Element Analysis Techniques For Adolescent Idiopathic Scoliosis Surgical Planning, Michael A. Polanco

Mechanical & Aerospace Engineering Theses & Dissertations

Adolescent Idiopathic Scoliosis, a three-dimensional deformity of the thoracolumbar spine, affects approximately 1-3% of patients ages 10-18. Surgical correction and treatment of the spinal column is a costly and high-risk task that is consistently complicated by factors such as patient-specific spinal deformities, curve flexibility, and surgeon experience. The following dissertation utilizes finite element analysis to develop a cost-effective, building-block approach by which surgical procedures and kinematic evaluations may be investigated. All studies conducted are based off a volumetric, thoracolumbar finite element (FE) model developed from computer-aided design (CAD) anatomy whose components are kinematically validated with in-vitro data. Spinal ligament stiffness …


The Effect Of Soft Tissue And Bone Morphology On The Stresses In The Foot And Ankle, Jinhyuk Kim Aug 2022

The Effect Of Soft Tissue And Bone Morphology On The Stresses In The Foot And Ankle, Jinhyuk Kim

Mechanical & Aerospace Engineering Theses & Dissertations

The foot and ankle interface with the ground, thus they absorb reaction forces and initiate load distribution through the body. The plantar fascia (PF) is a flexible structure that absorbs reaction forces and distributes loading across the foot. It is frequently a source of foot pain especially when people have plantar fasciitis and/or diabetes mellitus. Finite element (FE) models of the foot and ankle were created to examine the function however, the plantar fascia is frequently modeled as a 1D tension only spring, which does not represent variations caused by injury and/or disease.

As models move toward being patient specific, …


Validation Of Experimental And Finite Element Biomechanical Evaluation Of Human Cadaveric Mandibles, Shirish M. Ingawale, Deepak G. Krishnan, Tarun Goswami Jul 2022

Validation Of Experimental And Finite Element Biomechanical Evaluation Of Human Cadaveric Mandibles, Shirish M. Ingawale, Deepak G. Krishnan, Tarun Goswami

Biomedical, Industrial & Human Factors Engineering Faculty Publications

Background: Biomechanical analysis of human mandible is important not only to understand mechanical behavior and structural properties, but also to diagnose and develop treatment options for mandibular disorders. Therefore, the objective of this research was to generate analytical and experimental data on mandibles, construct custom 3D models, and compare the analytically derived maximum strains with strain gage data in five areas of interest for each mandible. Methods: We investigated the surface strains in the cadaveric human mandibles under different configurations of cyclic compressive loads in an experimental setting and compared these experimental strain data with results derived from computational finite …


Design And Finite Element Analysis Of Patient-Specific Total Temporomandibular Joint Implants, Shirish M. Ingawale, Tarun Goswami Jun 2022

Design And Finite Element Analysis Of Patient-Specific Total Temporomandibular Joint Implants, Shirish M. Ingawale, Tarun Goswami

Biomedical, Industrial & Human Factors Engineering Faculty Publications

In this manuscript, we discuss our approach to developing novel patient-specific total TMJ prostheses. Our unique patient-fitted designs based on medical images of the patient’s TMJ offer accurate anatomical fit, and better fixation to host bone. Special features of the prostheses have potential to offer improved osseo-integration and durability of the devices. The design process is based on surgeon’s requirements, feedback, and pre-surgical planning to ensure anatomically accurate and clinically viable device design. We use the validated methodology of FE modeling and analysis to evaluate the device design by investigating stress and strain profiles under functional/normal and para-functional/worst-case TMJ loading …


Retrospective Evaluation And Framework Development Of Bone Anisotropic Material Behavior Compared With Elastic, Elastic-Plastic, And Hyper-Elastic Properties, Farah Hamandi, James T. Tsatalis, Tarun Goswami Jan 2022

Retrospective Evaluation And Framework Development Of Bone Anisotropic Material Behavior Compared With Elastic, Elastic-Plastic, And Hyper-Elastic Properties, Farah Hamandi, James T. Tsatalis, Tarun Goswami

Biomedical, Industrial & Human Factors Engineering Faculty Publications

The main motivation for studying damage in bone tissue is to better understand how damage develops in the bone tissue and how it progresses. Such knowledge may help in the surgical aspects of joint replacement, fracture fixation or establishing the fracture tolerance of bones to prevent injury. Currently, there are no standards that create a realistic bone model with anisotropic material properties, although several protocols have been suggested. This study seeks to retrospectively evaluate the damage of bone tissue with respect to patient demography including age, gender, race, body mass index (BMI), height, and weight, and their role in causing …


Structural And Hemodynamic Analysis Of Transcatheter Aortic Valves, Dong Qiu Jan 2022

Structural And Hemodynamic Analysis Of Transcatheter Aortic Valves, Dong Qiu

Electronic Theses and Dissertations

The transcatheter aortic valve replacement (TAVR) procedure has become a well-established procedure for high, intermediate-risk, and low-risk patients. However, there is limited clinical data on the TAV's long-term durability, unlike SAV devices. Computational simulations can be an alternative way to evaluate the TAV devices. This dissertation aims to conduct structural and hemodynamic analyses on the TAV devices under different conditions using computational simulation approaches.

Initially, the impact of the bicuspid aortic valve on the TAV devices was evaluated. The result indicated that the CoreValve-like supra-annular self-expandable device was likely to have increased stress and strain on the leaflet when it …