Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Biomedical Engineering and Bioengineering

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian Oct 2022

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian

Doctoral Dissertations

The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …


Nanoformulation For Anticancer Drug Delivery: Enhanced Pharmacokinetics And Circulation, Gaurav Parekh Jul 2015

Nanoformulation For Anticancer Drug Delivery: Enhanced Pharmacokinetics And Circulation, Gaurav Parekh

Doctoral Dissertations

In this study, we have explored the application of the Layer-by-Layer (LbL) assembly technique for improving injectable drug delivery systems of low soluble anticancer drugs (e.g. Camptothecin (CPT), Paclitaxel (PTX) or Doxorubicin (DOX)). For this study, a polyelectrolyte shell encapsulates different types of drug nanocores (e.g. soft core, nanomicelle or solid lipid nanocores).The low soluble drugs tend to crystallize and precipitate in an aqueous medium. This is the reason they cannot be injected and may have low concentrations and low circulation time in the blood. Even though these drugs when present in the cancer microenvironment have high anti-tumor inhibition, the …


Low Soluble Drug Encapsulation Based On Architecture Of Layer-By-Layer Assembly For Longer Circulation Time And Targeted Therapy, Pravin Pattekari Apr 2013

Low Soluble Drug Encapsulation Based On Architecture Of Layer-By-Layer Assembly For Longer Circulation Time And Targeted Therapy, Pravin Pattekari

Doctoral Dissertations

A combined effect of sonication and layer-by-layer assembly (LbL) enhances the solubility of many poorly soluble inorganic and organic materials by forming stable particles with ca. 200 nm size and up to 90 wt% of loading. The entire method is reproducible, easy-to-handle, and flexible for varying surface properties according to the application of the materials. The method develops good colloidal stability of materials in buffers and maintains architecture for future improvement. A top-down approach, with a combined effect of sonication and LbL assembly, ruptures the material and allows adsorption of oppositely charged polyelectrolytes simultaneously. Thus, the approach is applicable for …


Ultrasonication Assisted Layer-By-Layer Technology For The Preparation Of Multi-Functional Anticancer Drugs Paclitaxel And Lapatinib, Xingcai Zhang Jan 2013

Ultrasonication Assisted Layer-By-Layer Technology For The Preparation Of Multi-Functional Anticancer Drugs Paclitaxel And Lapatinib, Xingcai Zhang

Doctoral Dissertations

In this dissertation, ultrasonication assisted Layer-by-Layer (LbL) technology for the preparation of multifunctional poorly water-soluble anticancer drug nanoparticles, paclitaxel and lapatinib, has been developed. Many FDA approved drugs are very low soluble in water; therefore, it is very difficult to load and control their release and targeting efficiently, which greatly confines their application. The development of this method will pave the way for the development and application of those low soluble anticancer drugs.

In the first part of this dissertation, the first approach for powerful ultrasonication, the top-down approach (sonicating bulk drug crystals in polyelectrolyte solution), was successfully applied for …


Nanofabrication Of Halloysite-Pcl Composite Scaffolds And Functionalization Of Titanium For Tissue Regeneration, Shraddha Parshottambhai Patel Jul 2011

Nanofabrication Of Halloysite-Pcl Composite Scaffolds And Functionalization Of Titanium For Tissue Regeneration, Shraddha Parshottambhai Patel

Doctoral Dissertations

Major medical needs may be achieved through regenerative medicine. Nanotechnology has triggered a research revolution in many important areas such as the biomedical sciences and bioengineering at the molecular level which has grown significantly due to the availability of new analytical applications and tools based on nanotechnology. Clinical conditions and diseases being targeted by nanotechnology research include burns, Alzheimer's and Parkinson's disease, implant failure, improved wound healing, birth defects, osteoporosis and congestive heart defects. Therapeutic use of growth factors and drugs to stimulate the production and/or function of endogenous cells represents a key area of regenerative medicine. The development of …


Ultrasonic Assisted Layer-By-Layer Assembly For Stable Nanocolloids Of Curcumin And Paclitaxel, Zhiguo Zheng Apr 2011

Ultrasonic Assisted Layer-By-Layer Assembly For Stable Nanocolloids Of Curcumin And Paclitaxel, Zhiguo Zheng

Doctoral Dissertations

Researchers have been trying to fight cancer with synthesis of new bioactive compounds but many of these novel drugs have low solubility in water and it is difficult to deliver them into a patient's body. One way of solving this particular problem is to use nanoscale drug delivery systems. In this dissertation, we describe using an ultrasonic assisted layer-by-layer encapsulation process to prepare anti-cancer drugs with 50∼200 nm particle size with designed coating to achieve sustained release and target delivery.

Two methods for systematic manufacture of low solubility anti-cancer drug nanoparticles were proposed: I) Top-down approach to breakdown larger drug …


Application Of Polyelectrolyte Layer-By-Layer Nano-Assembly For Surface Modification, Encapsulation And Controlled Release, Nikhil Anil Pargaonkar Oct 2005

Application Of Polyelectrolyte Layer-By-Layer Nano-Assembly For Surface Modification, Encapsulation And Controlled Release, Nikhil Anil Pargaonkar

Doctoral Dissertations

In this study, we applied the traditional Electrostatic layer-by-layer (ELBL) assembly procedure to fabricate nanothin films over flat surfaces, and modify particle surfaces to influence the drug particle size, and drug release. The ELBL assembly has previously been applied to fabricate multilayer nano-scale thin films, but its ability to instantaneously influencing particle size is unique. Other unique observations such as influence on drug release as a result of polymer complexation, and thermal changes occurring during layer fabrication are recorded.

The ELBL self-assembly process was applied to produce dexamethasone particles layered with various polyelectrolyte layer combinations. These combinations were further applied …