Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Biomedical Engineering and Bioengineering

Mechanical Impedance Of Ankle As A Function Of Electromyography Signals Of Lower Leg Muscles Using Artificial Neural Network, Chen Jia Jan 2015

Mechanical Impedance Of Ankle As A Function Of Electromyography Signals Of Lower Leg Muscles Using Artificial Neural Network, Chen Jia

Dissertations, Master's Theses and Master's Reports - Open

This paper reports on the feasibility of developing a model to describe the nonlinear relationship between the mechanical impedance of the human ankle within a specified range of frequency and the root mean square (RMS) value of the Electromyography (EMG) signals of the muscles of human ankle using Artificial Neural Network (ANN). A lower extremity rehabilitation robot — Anklebot was used to apply pseudo-random mechanical perturbations to the ankle and measure the angular displacement of the ankle to estimate the data of ankle mechanical impedance. Meanwhile, the surface EMG signals from the selected muscles were monitored and recorded using a …


Development Of A Cell Morphological Analysis Tool To Evaluate The Ultrasound Vibrational Effects On Cell Adhesion, Joseph M. Smith Jan 2015

Development Of A Cell Morphological Analysis Tool To Evaluate The Ultrasound Vibrational Effects On Cell Adhesion, Joseph M. Smith

Dissertations, Master's Theses and Master's Reports - Open

Fibroblast encapsulation is a stage of the wound healing process in which the implanted device is separated from the biological environment due to the formation of fibrotic tissue. Uncontrolled adhesion of fibroblasts, called fibrosis, has the ability to inhibit an implanted device’s functionality over its lifetime. Over time, fibroblasts have been shown to cause loosening and failure of bone-anchor implants which could include the possibility of harming the patient. The encapsulating process could also hinder the sensitivity of implanted biosensors operating in the body for continuous monitoring. Unfortunately, the antifouling surfaces which are commonly used on implanted devices to control …


Gelatin Microgel Incorporated Poly (Ethylene Glycol) Bioadhesive With Enhanced Adhesive Property And Bioactivity, Yuting Li Jan 2015

Gelatin Microgel Incorporated Poly (Ethylene Glycol) Bioadhesive With Enhanced Adhesive Property And Bioactivity, Yuting Li

Dissertations, Master's Theses and Master's Reports - Open

In this study, chemically crosslinked gelatin microgels were incorporated into dopamine-modified poly (ethylene glycol) (PEGDM) adhesive to form composite bioadhesive with simultaneously improved adhesive property and bioactivity. Gelatin microgel, with an average diameter of 53.6±14.2μm, was prepared with water in oil emulsification method and chemically crosslinked with
1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). Gelatin microgels were incorporated into PEGDM adhesive precursor solution at 1.5wt%, 3.75wt% and 7.5wt%. The cure time of adhesive reduced from 54 seconds to 37 seconds with increasing gelatin microgel content. Additionally, the incorporation of the gelatin microgel also increased the crosslinking density of the adhesive network …


Ph Responsive, Adhesive Hydrogels Based On Reversible Catechol - Boronic Acid Complexation, Ameya Ravindra Narkar Jan 2015

Ph Responsive, Adhesive Hydrogels Based On Reversible Catechol - Boronic Acid Complexation, Ameya Ravindra Narkar

Dissertations, Master's Theses and Master's Reports - Open

Smart hydrogel adhesives with tunable properties consist of adhesive moieties in the polymer network that respond to external stimuli like pH, temperature, etc. Responsiveness of smart adhesives to pH, in particular, is important because of the simple actuation mechanism and the ability to achieve facile bonding and debonding upon command. Covalently crosslinked hydrogel adhesives were prepared by employing an N-HEAA (hydroxyethyl acrylamide) backbone embedded with dopamine methacrylamide (DMA), a marine mussel inspired adhesive protein and 3-acrylamido phenylboronic acid (AAPBA), to determine the effect of pH on the interfacial binding properties of the hydrogel adhesive with a borosilicate glass substrate. Swelling …


The Influence Of Passive Ankle Joint Power On Balance Recovery, Stephanie E. Hamilton Jan 2015

The Influence Of Passive Ankle Joint Power On Balance Recovery, Stephanie E. Hamilton

Dissertations, Master's Theses and Master's Reports - Open

Over one–third of Americans over the age of 65 fall each year, costing more than $19 billion in health care costs in 2000. Many adults 65+ who have not experienced a fall still fear falling, and fear can decrease quality of life and increase the likelihood of falls. Several factors such as muscle strength, power, stiffness and tendon properties change in the human body with age affecting balance, which has been tagged as a fall risk predictor. Additionally, balance recovery strategies also differ between young and older adults, with young adults primarily utilizing their ankle joint and older adults utilizing …


Integration Of Instrumentation And Processing Software Of A Laser Speckle Contrast Imaging System, Jacob James Carrick Jan 2014

Integration Of Instrumentation And Processing Software Of A Laser Speckle Contrast Imaging System, Jacob James Carrick

Dissertations, Master's Theses and Master's Reports - Open

Laser speckle contrast imaging (LSCI) has the potential to be a powerful tool in medicine, but more research in the field is required so it can be used properly. To help in the progression of Michigan Tech's research in the field, a graphical user interface (GUI) was designed in Matlab to control the instrumentation of the experiments as well as process the raw speckle images into contrast images while they are being acquired. The design of the system was successful and is currently being used by Michigan Tech's Biomedical Engineering department. This thesis describes the development of the LSCI GUI …


Design And Application Of Wireless Passive Magnetoelastic Resonance And Magnetoharmonic Force Sensors, Brandon D. Pereles Jan 2014

Design And Application Of Wireless Passive Magnetoelastic Resonance And Magnetoharmonic Force Sensors, Brandon D. Pereles

Dissertations, Master's Theses and Master's Reports - Open

The objective of the work described in this dissertation is the development of new wireless passive force monitoring platforms for applications in the medical field, specifically monitoring lower limb prosthetics. The developed sensors consist of stress sensitive, magnetically soft amorphous metallic glass materials. The first technology is based on magnetoelastic resonance. Specifically, when exposed to an AC excitation field along with a constant DC bias field, the magnetoelastic material mechanically vibrates, and may reaches resonance if the field frequency matches the mechanical resonant frequency of the material. The presented work illustrates that an applied loading pins portions of the strip, …


Utilizing Dielectrophoresis To Determine The Physiological Differences Of Eukaryotic Cells, Tayloria Nicole Gail Adams Jan 2014

Utilizing Dielectrophoresis To Determine The Physiological Differences Of Eukaryotic Cells, Tayloria Nicole Gail Adams

Dissertations, Master's Theses and Master's Reports - Open

Type 1 diabetes affects over 108,000 children, and this number is steadily increasing. Current insulin therapies help manage the disease but are not a cure. Over a child’s lifetime they can develop kidney disease, blindness, cardiovascular disease and many other issues due to the complications of type 1 diabetes. This autoimmune disease destroys beta cells located in the pancreas, which are used to regulate glucose levels in the body. Because there is no cure and many children are affected by the disease there is a need for alternative therapeutic options that can lead to a cure.

Human mesenchymal stem cells …


A Backing Device Based On An Embedded Stiffener And Retractable Insertion Tool For Thin-Film Cochlear Arrays, Radheshyam Tewari Jan 2014

A Backing Device Based On An Embedded Stiffener And Retractable Insertion Tool For Thin-Film Cochlear Arrays, Radheshyam Tewari

Dissertations, Master's Theses and Master's Reports - Open

Intracochlear trauma from surgical insertion of bulky electrode arrays and inadequate pitch perception are areas of concern with current hand-assembled commercial cochlear implants. Parylene thin-film arrays with higher electrode densities and lower profiles are a potential solution, but lack rigidity and hence depend on manually fabricated permanently attached polyethylene terephthalate (PET) tubing based bulky backing devices. As a solution, we investigated a new backing device with two sub-systems. The first sub-system is a thin poly(lactic acid) (PLA) stiffener that will be embedded in the parylene array. The second sub-system is an attaching and detaching mechanism, utilizing a poly(N-vinylpyrrolidone)-block-poly(d,l-lactide) (PVP-b-PDLLA) copolymer-based …


Fabrication Of Drug Eluting Ti Implants For Dental/Orthopedic Applications, Azhang Hamlekhan Jan 2014

Fabrication Of Drug Eluting Ti Implants For Dental/Orthopedic Applications, Azhang Hamlekhan

Dissertations, Master's Theses and Master's Reports - Open

Titanium and its alloys are typically used for fabrication of dental and orthopedic implants as they possess various desirable properties including biocompatibility and corrosion resistance. In spite of such benefits, titanium implants show lack of osseointegration after surgery in minor cases. The objective of this research has been to modify the surface of titanium alloy for medical applications through increasing surface hydrophilicity and drug loading. Primarily, anodization method is employed for fabrication of nanotubes on titanium surface to act as anchoring cite for cells.

Considering the key role of surface hydrophilicity on cellular attachment to the surface and subsequent biological …


Development Of Vapor Deposited Silica Sol-Gel Particles For A Bioactive Materials System To Direct Osteoblast Behavior, Katherine Lynn Snyder Jan 2013

Development Of Vapor Deposited Silica Sol-Gel Particles For A Bioactive Materials System To Direct Osteoblast Behavior, Katherine Lynn Snyder

Dissertations, Master's Theses and Master's Reports - Open

Tissue engineering and regenerative medicine have emerged in an effort to generate replacement tissues capable of restoring native tissue structure and function, but because of the complexity of biologic system, this has proven to be much harder than originally anticipated. Silica based bioactive glasses are popular as biomaterials because of their ability to enhance osteogenesis and angiogenesis. Sol-gel processing methods are popular in generating these materials because it offers: 1) mild processing conditions; 2) easily controlled structure and composition; 3) the ability to incorporate biological molecules; and 4) inherent biocompatibility. The goal of this work was to develop a bioactive …


Studies Of Functionalized Nanoparticles For Smart Self-Assembly And As Controlled Drug Delivery, Xiaochu Ding Jan 2013

Studies Of Functionalized Nanoparticles For Smart Self-Assembly And As Controlled Drug Delivery, Xiaochu Ding

Dissertations, Master's Theses and Master's Reports - Open

This dissertation is related to the studies of functionalized nanoparticles for self-assembly and as controlled drug delivery system. The whole topic is composed of two parts. In the first part, the research was conducted to design and synthesize a new type of ionic peptide-functionalized copolymer conjugates for self-assembly into nanoparticle fibers and 3D scaffolds with the ability of multi-drug loading and governing the release rate of each drug for tissue engineering. The self-assembly study confirmed that such peptide-functionalized amphiphilic copolymers underwent different self-assembly behavior. The bigger nanoparticles were more easily assembled into nanoparticle fibers and 3D scaffolds with larger pore …


Alternating Current Dielectrophoretic Manipulation Of Erythrocytes In Medical Microdevice Technology, Kaela M. Leonard Jan 2012

Alternating Current Dielectrophoretic Manipulation Of Erythrocytes In Medical Microdevice Technology, Kaela M. Leonard

Dissertations, Master's Theses and Master's Reports - Open

Medical microdevices have gained popularity in the past few decades because they allow the medical laboratory to be taken out into the field and for disease diagnostics to happen with a smaller sample volume, at a lower cost and much faster. Blood is the human body's most readily available and informative diagnostic fluid because of the wealth of information it provides about the body's general health including enzymatic, proteomic and immunological states. The purpose of this project is to optimize operating conditions and study ABO-Rh erythrocytes dielectrophoretic responses to alternating current electric signals. The end goal of this project is …


Exploration Of The Role Of Serum Factors In Maintaining Bone Mass During Hibernation In Black Bears, Rachel Marie Bradford Jan 2010

Exploration Of The Role Of Serum Factors In Maintaining Bone Mass During Hibernation In Black Bears, Rachel Marie Bradford

Dissertations, Master's Theses and Master's Reports - Open

Disuse osteoporosis is a condition in which reduced mechanical loading (e.g. bed-rest, immobilization, or paralysis) results in unbalanced bone turnover. The American black bear is a unique, naturally occurring model for the prevention of disuse osteoporosis. Bears remain mostly inactive for up to half a year of hibernation annually, yet they do not lose bone mechanical strength or structural properties throughout hibernation. The long-term goal of this study is to determine the biological mechanism through which bears maintain bone during hibernation. This mechanism could pinpoint new signaling pathway targets for the development of drugs for osteoporosis prevention. In this study, …


Use Of A 3d Perfusion Bioreactor With Osteoblasts And Osteoblast/Endothelial Cell Co-Cultures To Improve Tissue-Engineered Bone, Matthew J. Barron Jan 2010

Use Of A 3d Perfusion Bioreactor With Osteoblasts And Osteoblast/Endothelial Cell Co-Cultures To Improve Tissue-Engineered Bone, Matthew J. Barron

Dissertations, Master's Theses and Master's Reports - Open

The delivery of oxygen, nutrients, and the removal of waste are essential for cellular survival. Culture systems for 3D bone tissue engineering have addressed this issue by utilizing perfusion flow bioreactors that stimulate osteogenic activity through the delivery of oxygen and nutrients by low-shear fluid flow. It is also well established that bone responds to mechanical stimulation, but may desensitize under continuous loading. While perfusion flow and mechanical stimulation are used to increase cellular survival in vitro, 3D tissue-engineered constructs face additional limitations upon in vivo implantation. As it requires significant amounts of time for vascular infiltration by the host, …


Influence Of Traumatic Impaction And Pathological Loading On Knee Menisci, Megan Leigh Killian Jan 2010

Influence Of Traumatic Impaction And Pathological Loading On Knee Menisci, Megan Leigh Killian

Dissertations, Master's Theses and Master's Reports - Open

Nearly half of the US population faces the risk of developing knee osteoarthritis (OA). Both in vitro and in vivo studies can aid in a better understanding of the etiology, progression, and advancement of this debilitating disorder. The knee menisci are fibrocartilagenous structures that aid in the distribution of load, attenuation of shock, alignment and lubrication of the knee. Little is known about the biochemical and morphological changes associated with knee menisci following altered loading and traumatic impaction, and investigations are needed to further elucidate how degradation of this soft tissue advances over time. The biochemical response of porcine meniscal …