Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Biomedical Engineering and Bioengineering

Motion-Resistant Pulse Oximetry, Ludvik Alkhoury May 2023

Motion-Resistant Pulse Oximetry, Ludvik Alkhoury

Dissertations

The measurement of vital signs ? such as peripheral capillary oxygen saturation (SpO2) and heart rate (HR) levels ? by a pulse oximeter is studied. The pulse oximeter is a non-invasive device that measures photoplethysmography (PPG) signals and extracts vital signs from them. However, the quality of the PPG signal measured by oximetry sensors is known to deteriorate in the presence of substantial human and sensor movements contributing to the measurement noise. Methods to suppress such noise from PPG signals measured by an oximeter and to calculate the associated vital signs with high accuracy even when the wearer …


Improving The Performance And Evaluation Of Computer-Assisted Semen Analysis, Ji-Won Choi May 2022

Improving The Performance And Evaluation Of Computer-Assisted Semen Analysis, Ji-Won Choi

Dissertations

Semen analysis is performed routinely in fertility clinics to analyze the quality of semen and sperm cells of male patients. The analysis is typically performed by trained technicians or by Computer-Assisted Semen Analysis (CASA) systems. Manual semen analysis performed by technicians is subjective, time-consuming, and laborious, and yet most fertility clinics perform semen analysis in this manner. CASA systems, which are designed to perform the same tasks automatically, have a considerable market share, yet many studies still express concerns about their accuracy and consistency. In this dissertation, the focus is on detection, tracking, and classification of sperm cells in semen …


Assessing Structural And Functional Brain Alterations And Work-Related Fatigue In Non-Hyposmic And Hyposmic Covid-19 Survivors, Rakibul Hafiz May 2022

Assessing Structural And Functional Brain Alterations And Work-Related Fatigue In Non-Hyposmic And Hyposmic Covid-19 Survivors, Rakibul Hafiz

Dissertations

In the year 2019, life began to change at the advent of a global pandemic caused by the novel coronavirus. Mask mandates and mass vaccinations have mitigated the effects significantly, yet cases keep rising with new variants, especially, in densely populated countries, like India. Recent neuroimaging evidence shows the virus can attack the central nervous system (CNS). However, exactly which brain regions undergo structural and functional changes remain largely unknown. Many patients experience 'loss of/reduced sense of smell' (i.e., hyposmic) and an alarming number of survivors develop persistent symptoms ('long-COVID') for several months after initial infection. Fatigue is the most …


Intelligent System For Laparoscopic Surgery Suturing Skill Assessment, Mohammed Yasser Al-Gailani Aug 2021

Intelligent System For Laparoscopic Surgery Suturing Skill Assessment, Mohammed Yasser Al-Gailani

Dissertations

In laparoscopic surgery, which is also referred to as minimally invasive surgery (MIS), surgeons carry out surgical procedures with the assistance of a video camera and several surgical instruments. Laparoscopic surgeons should possess excellent eye-hand coordination capabilities, strong cognitive knowledge, case and problem management, and manual dexterity skills. Such skills can be acquired through simulation using a basic, low-fidelity setup, such as the surgical box-trainer. General surgeons must pass a set of tests on a Fundamentals of Laparoscopic Surgery (FLS) Trainer device.

One pivotal skill for a successful operation is developing a sense of the applied forces on the tissue …


Scanless Optical Coherence Tomography For High-Speed 3d Biomedical Microscopy, Yahui Wang May 2020

Scanless Optical Coherence Tomography For High-Speed 3d Biomedical Microscopy, Yahui Wang

Dissertations

Optical coherence tomography (OCT) is a high-resolution cross-sectional imaging modality that has found applications in a wide range of biomedical fields, such as ophthalmology diagnosis, interventional cardiology, surgical guidance, and oncology. OCT can be used to image dynamic scenes, in quantitative blood flow sensing and visualization, dynamic optical coherence elastography, and large-scale neural recording. However, the spatiotemporal resolution of OCT for dynamic imaging is limited by the approach it takes to scan the three-dimensional (3-D) space. In a typical OCT system, the incident light is focused to a point at the sample. The OCT system uses mechanical scanners (galvanometers or …


Identification Of Neurobiological Mechanisms Associated With Attention Deficits In Adults Post Traumatic Brain Injury, Ziyan Wu May 2020

Identification Of Neurobiological Mechanisms Associated With Attention Deficits In Adults Post Traumatic Brain Injury, Ziyan Wu

Dissertations

Traumatic Brain Injury (TBI) is one of the major public health concerns with approximately 70 million new cases occurring worldwide per year. It is often caused by a forceful bump, blow, or jolt to the head, resulting in brain tissue damage and normal brain functions disruption. All grades of TBI, ranging from mild to severe, can cause wide-ranging and long-term effects on affected individuals, resulting in physical impairments, and neurocognitive consequences that permanently affect their abilities to perform daily activities. Attention deficits are the most common persisting neurocognitive consequences following TBI, which significantly contribute to poor academic and social functioning, …


Dual Modality Optical Coherence Tomography : Technology Development And Biomedical Applications, Farzana Rahmat Zaki May 2019

Dual Modality Optical Coherence Tomography : Technology Development And Biomedical Applications, Farzana Rahmat Zaki

Dissertations

Optical coherence tomography (OCT) is a cross-sectional imaging modality that is widely used in clinical ophthalmology and interventional cardiology. It is highly promising for in situ characterization of tumor tissues. OCT has high spatial resolution and high imaging speed to assist clinical decision making in real-time.

OCT can be used in both structural imaging and mechanical characterization. Malignant tumor tissue alters morphology. Additionally, structural OCT imaging has limited tissue differentiation capability because of the complex and noisy nature of the OCT signal. Moreover, the contrast of structural OCT signal derived from tissue’s light scattering properties has little chemical specificity. Hence, …


Compressive Sensing Framework For Mass Spectrometry Data Analysis, Khalfalla Ahmad Kh. Awedat Apr 2016

Compressive Sensing Framework For Mass Spectrometry Data Analysis, Khalfalla Ahmad Kh. Awedat

Dissertations

Mass Spectrometry (MS) data is ideal for identifying unique bio-signatures of diseases. However, the high dimensionality of MS data hinders any promising MS-based proteomics development. The goal of this dissertation is to develop an accurate classification tool by employing compressive sensing (CS). Not only can CS significantly reduce MS data dimensionality, but it also will allow for full reconstruction of original data. The framework developed in this work is based on using L2 and a mixed L2-L1 norms, allowing an overdetermined system to be resolved. The results show that the L2- based algorithm with regularization terms has a better performance …


Exploration Of Stimulus Current Energy Reduction And Bifurcation Dynamics In Conductance-Based Neuron Models Using Optimal Control Theory, Michael E. Ellinger Jun 2015

Exploration Of Stimulus Current Energy Reduction And Bifurcation Dynamics In Conductance-Based Neuron Models Using Optimal Control Theory, Michael E. Ellinger

Dissertations

Hodgkin-Huxley type conductance-based models can simulate the effect of time-varying injected stimulus currents on the neuron membrane voltage. The dynamics simulated by these model types enables investigation of the biophysical basis of neuronal activity which is fundamental to higher level function. Broadened understanding the basis of nervous system function could lead to development of effective treatment for related diseases, disorders, and the effects of trauma. In this dissertation, optimal control is used with conductance-based neuron models to develop a "Reduced Energy Input Stimulus Discovery Method." Within the method, an objective function balances two competing criteria: tracking a reference membrane voltage …