Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Wright State University

MQAE

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Functions Of The Apical Na+/ K+/ 2cl- Cotransporter 1 In Choroid Plexus Epithelial Cells., Jeannine Marie Crum Gregoriades Jan 2017

Functions Of The Apical Na+/ K+/ 2cl- Cotransporter 1 In Choroid Plexus Epithelial Cells., Jeannine Marie Crum Gregoriades

Browse all Theses and Dissertations

Choroid plexus epithelial cells (CPECs) secrete cerebrospinal fluid (CSF) and regulate its electrolyte composition. CPECs express both the Na+/ K+ ATPase and the Na+/ K+/ 2Cl- cotransporter 1 (NKCC1) on their apical membrane (CSF facing), deviating from the typical basolateral membrane location in chloride secretory epithelia. Given this unusual location of NKCC1 and the unknown intracellular Na+ and Cl- concentrations of CPECs, the cotransporter function in these cells is not understood. Further, the direction of net ion and associated water fluxes mediated by NKCC1 under basal physiological conditions in CPECs …


Functions Of The Apical Na+/ K+/ 2cl- Cotransporter 1 In Choroid Plexus Epithelial Cells, Jeannine Marie Crum Gregoriades Jan 2017

Functions Of The Apical Na+/ K+/ 2cl- Cotransporter 1 In Choroid Plexus Epithelial Cells, Jeannine Marie Crum Gregoriades

Browse all Theses and Dissertations

Choroid plexus epithelial cells (CPECs) secrete cerebrospinal fluid (CSF) and regulate its electrolyte composition. CPECs express both the Na+/ K+ ATPase and the Na+/ K+/ 2Cl- cotransporter 1 (NKCC1) on their apical membrane (CSF facing), deviating from the typical basolateral membrane location in chloride secretory epithelia. Given this unusual location of NKCC1 and the unknown intracellular Na+ and Cl- concentrations of CPECs, the cotransporter function in these cells is not understood. Further, the direction of net ion and associated water fluxes mediated by NKCC1 under basal physiological conditions in CPECs is controversial. Determining the direction of NKCC1- mediated fluxes is …


Ion Transport Mechanisms During Hyposmotic Regulatory And Isosmotic Apoptotic Volume Decreases In A Human Lens Epithelial Cells Line, Ameet Ajit Chimote Jan 2009

Ion Transport Mechanisms During Hyposmotic Regulatory And Isosmotic Apoptotic Volume Decreases In A Human Lens Epithelial Cells Line, Ameet Ajit Chimote

Browse all Theses and Dissertations

Living cells maintain constant volume in response to physiological stresses by altering trans-membrane ion, solute and water flow. In the present study, early and late membrane transport changes in human lens epithelial (HLE-B3) cells under hyposmotic and apoptotic stress were compared. Cell potassium (Ki), rubidium (Rbi)-uptake and water content were measured by atomic absorption spectrophotometry and gravimetry, respectively. Intracellular chloride concentration [Cl]i was determined with the fluorescence dye N- (ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE), during regulatory volume decrease (RVD) after hyposmotic stress and apoptotic volume decrease (AVD) induced by staurosporine (STP), a protein-kinase inhibitor. Cell water increased in hyposmotic balanced salt solution …