Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Wright State University

Electrophysiology

Articles 1 - 7 of 7

Full-Text Articles in Biomedical Engineering and Bioengineering

Altered Skeletal Muscle Excitation-Contraction Coupling In The R6/2 Transgenic Mouse Model For Huntington's Disease, Daniel R. Miranda Jan 2021

Altered Skeletal Muscle Excitation-Contraction Coupling In The R6/2 Transgenic Mouse Model For Huntington's Disease, Daniel R. Miranda

Browse all Theses and Dissertations

Huntington’s disease (HD) has classically been categorized as a neurodegenerative disorder. However, the expression of the disease-causing mutated huntingtin gene in skeletal muscle may contribute to the symptoms of HD, namely those that involve involuntary muscle contraction. In the R6/2 transgenic mouse model of HD, we previously observed ion channel defects that could contribute to involuntary muscle contraction. Here, in R6/2 muscle we investigated the consequence of these ion channel defects on action potentials (APs), the first step in excitation-contraction (EC) coupling. We found that the ion channel defects were associated with depolarizing the baseline membrane potential during AP trains. …


Altered Skeletal Muscle Excitation-Contraction Coupling In The R6/2 Transgenic Mouse Model For Huntington's Disease, Daniel R. Miranda Jan 2021

Altered Skeletal Muscle Excitation-Contraction Coupling In The R6/2 Transgenic Mouse Model For Huntington's Disease, Daniel R. Miranda

Browse all Theses and Dissertations

Huntington’s disease (HD) has classically been categorized as a neurodegenerative disorder. However, the expression of the disease-causing mutated huntingtin gene in skeletal muscle may contribute to the symptoms of HD, namely those that involve involuntary muscle contraction. In the R6/2 transgenic mouse model of HD, we previously observed ion channel defects that could contribute to involuntary muscle contraction. Here, in R6/2 muscle we investigated the consequence of these ion channel defects on action potentials (APs), the first step in excitation-contraction (EC) coupling. We found that the ion channel defects were associated with depolarizing the baseline membrane potential during AP trains. …


Persistent Inward Currents Play A Role In Muscle Dysfunction Seen In Myotonia Congenita, Ahmed Alaa Hawash Jan 2017

Persistent Inward Currents Play A Role In Muscle Dysfunction Seen In Myotonia Congenita, Ahmed Alaa Hawash

Browse all Theses and Dissertations

Myotonia congenita is a rare skeletal muscle channelopathy caused by a reduced chloride channel (ClC-1) current, which results in debilitating muscle hyperexcitability, prolonged contractions, and transient episodes of weakness. The excitatory events that trigger myotonic action potentials in the absence of stabilizing ClC-1 current are not fully understood. My in vitro intracellular recordings from a mouse homozygous knockout of ClC-1 revealed a slow after-depolarization (AfD) that triggers myotonic action potentials. The AfD is well-explained by a tetrododoxin-sensitive and voltage-dependent Na+ persistent inward current (NaPIC). Notably, this NaPIC undergoes slow inactivation over seconds, thus providing the first mechanistic explanation for the …


Persistent Inward Currents Play A Role In Muscle Dysfunction Seen In Myotonia Congenita, Ahmed Alaa Hawash Jan 2017

Persistent Inward Currents Play A Role In Muscle Dysfunction Seen In Myotonia Congenita, Ahmed Alaa Hawash

Browse all Theses and Dissertations

Myotonia congenita is a rare skeletal muscle channelopathy caused by a reduced chloride channel (ClC-1) current, which results in debilitating muscle hyperexcitability, prolonged contractions, and transient episodes of weakness. The excitatory events that trigger myotonic action potentials in the absence of stabilizing ClC-1 current are not fully understood. My in vitro intracellular recordings from a mouse homozygous knockout of ClC-1 revealed a slow after-depolarization (AfD) that triggers myotonic action potentials. The AfD is well-explained by a tetrododoxin-sensitive and voltage-dependent Na+ persistent inward current (NaPIC). Notably, this NaPIC undergoes slow inactivation over seconds, thus providing the first mechanistic explanation for the …


An Improved Adaptive Filtering Approach For Removing Artifact From The Electroencephalogram, Justin Ronald Estepp Jan 2015

An Improved Adaptive Filtering Approach For Removing Artifact From The Electroencephalogram, Justin Ronald Estepp

Browse all Theses and Dissertations

The biophysics of volume conduction that enable electrophysiological data acquisition also result in the mixing of data sources including possible, undesirable noise sources at the electrode interface. This work specifically focuses on improving the performance of the recursive least-squares (RLS) adaptive filtering method for removing eye movement artifact from the electroencephalogram. In biophysically-inspired simulated data, the RLS algorithm is verified to produce results that are inferior to extended infomax independent component analysis (ICA), the most widely used artifact correction approach in this problem space, due to its non-linear filter phase response and the presence of bidirectional contamination, or cross-talk, resultant …


The Role Of Ca2+ In Central Respiratory Control Neurons Of The Locus Coeruleus: Development Of The Chemosensitive Brake, Ann Nicole Imber Jan 2012

The Role Of Ca2+ In Central Respiratory Control Neurons Of The Locus Coeruleus: Development Of The Chemosensitive Brake, Ann Nicole Imber

Browse all Theses and Dissertations

Chemosensitive LC neurons increase their firing rate in response to increased CO2 (hypercapnia) in part via inhibition of K+ channels. This increase gets smaller during the first two postnatal weeks (neonatal rats aged P3-P16). Alterations of this "accelerating" pathway may account for the developmental changes in the magnitude of the chemosensitive response in LC neurons. Alternatively, Ca2+ and Ca2+ channels may play a role in the response to hypercapnia, but little is known about the role of Ca2+ in central chemosensitivity. Whole cell patch clamp and fluorescence imaging microscopy were used to study a different …


The Effects Of Chronic Hypoxia And Substance P On The Chemosensitive Response Of Individual Nucleus Tractus Solitarius (Nts) Neurons From Adult Rats, Nicole L. Nichols Jan 2008

The Effects Of Chronic Hypoxia And Substance P On The Chemosensitive Response Of Individual Nucleus Tractus Solitarius (Nts) Neurons From Adult Rats, Nicole L. Nichols

Browse all Theses and Dissertations

The chemosensitive responses of individual nucleus tractus solitarius (NTS) neurons from neonatal rats have been extensively studied, but few studies have examined the chemosensitive responses of NTS neurons from adult rats. In addition, environmental conditions have been used to mimic respiratory diseases/disorders in rats to study how the cellular responses of individual neurons change to regulate breathing during pathological conditions. Lastly, it has been shown that substance P release increases in response to hypoxia from peripheral afferents that primarily terminate in the caudal NTS. We studied the effect of chronic hypoxia (CHx) and substance P on the response to hypercapnia …