Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Discovery And Engineering Of An Endophytic Pseudomonas Strain From Taxus Chinensis For Efficient Production Of Zeaxanthin Diglucoside, Ozkan Fidan, Jixun Zhan Aug 2019

Discovery And Engineering Of An Endophytic Pseudomonas Strain From Taxus Chinensis For Efficient Production Of Zeaxanthin Diglucoside, Ozkan Fidan, Jixun Zhan

Biological Engineering Faculty Publications

Background

Endophytic microorganisms are a rich source of bioactive natural products. They are considered as promising biofertilizers and biocontrol agents due to their growth-promoting interactions with the host plants and their bioactive secondary metabolites that can help manage plant pathogens. Identification of new endophytes may lead to the discovery of novel molecules or provide new strains for production of valuable compounds.

Results

In this study, we isolated an endophytic bacterium from the leaves of Taxus chinensis, which was identified as Pseudomonas sp. 102515 based on the 16S rRNA gene sequence and physiological characteristics. Analysis of its secondary metabolites revealed …


Modified Substrate Specificity Of A Methyltransferase Domain By Protein Insertion Into An Adenylation Domain Of The Bassianolide Synthetase, Fuchao Xu, Russell Butler, Kyle M. May, Megi Rexhepaj, Dayu Yu, Jiachen Zi, Yi Chen, Yonghong Liang, Jia Zeng, Joan Hevel, Jixun Zhan Jul 2019

Modified Substrate Specificity Of A Methyltransferase Domain By Protein Insertion Into An Adenylation Domain Of The Bassianolide Synthetase, Fuchao Xu, Russell Butler, Kyle M. May, Megi Rexhepaj, Dayu Yu, Jiachen Zi, Yi Chen, Yonghong Liang, Jia Zeng, Joan Hevel, Jixun Zhan

Chemistry and Biochemistry Faculty Presentations

Background: Creating designer molecules using a combination of select domains from polyketide synthases and/or nonribosomal peptide synthetases (NRPS) continues to be a synthetic goal. However, an incomplete understanding of how protein-protein interactions and dynamics affect each of the domain functions stands as a major obstacle in the field. Of particular interest is understanding the basis for a class of methyltransferase domains (MT) that are found embedded within the adenylation domain (A) of fungal NRPS systems instead of in an end-to-end architecture.

Results: The MT domain from bassianolide synthetase (BSLS) was removed and the truncated enzyme BSLS-ΔMT was recombinantly expressed. The …


Identification Of New Glutamate Decarboxylases From Streptomyces For Efficient Production Of Γ-Aminobutyric Acid In Engineered Escherichia Coli, Haina Yuan, Hongbo Wang, Ozkan Fidan, Yong Qin, Gongnian Xiao, Jixun Zhan Mar 2019

Identification Of New Glutamate Decarboxylases From Streptomyces For Efficient Production Of Γ-Aminobutyric Acid In Engineered Escherichia Coli, Haina Yuan, Hongbo Wang, Ozkan Fidan, Yong Qin, Gongnian Xiao, Jixun Zhan

Biological Engineering Faculty Publications

Background

Gamma (γ)-Aminobutyric acid (GABA) as a bioactive compound is used extensively in functional foods, pharmaceuticals and agro-industry. It can be biosynthesized via decarboxylation of monosodium glutamate (MSG) or L-glutamic acid (L-Glu) by glutamate decarboxylase (GAD; EC4.1.1.15). GADs have been identified from a variety of microbial sources, such as Escherichia coli and lactic acid bacteria. However, no GADs from Streptomyces have been characterized. The present study is aimed to identify new GADs from Streptomyces strains and establish an efficient bioproduction platform for GABA in E. coli using these enzymes.

Results

By sequencing and analyzing the genomes of three Streptomycesstrains, …