Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 25 of 25

Full-Text Articles in Biomedical Engineering and Bioengineering

Development Of A Low-Cost, Open Source Miniature Rotary Cell Culture System To Simulate Microgravity Within An Irradiated Environment, Elizabeth Vargis, Jr Dennison Dec 2019

Development Of A Low-Cost, Open Source Miniature Rotary Cell Culture System To Simulate Microgravity Within An Irradiated Environment, Elizabeth Vargis, Jr Dennison

Browse all Datasets

A major challenge for astronauts in long-duration space travel is combatting the hazardous spaceflight environment caused by microgravity and increased levels of ionizing radiation. Microgravity damages cellular DNA by increasing the production of harmful reactive oxygen species, while ionizing radiation damages DNA by creating double-stranded DNA (dsDNA) breaks. Cellular damage due to microgravity and radiation has been investigated using ground-based models, but most models consider microgravity and ionizing radiation alone, or asynchronously. Synchronous modeling better mimics spaceflight conditions and can be used to understand the combined effects of microgravity and ionizing radiation. However, commercially available devices to model microgravity and …


A Multi-Scale Approach To Study Biochemical And Biophysical Aspects Of Resveratrol On Diesel Exhaust Particle-Human Primary Lung Cell Interaction, Wei Zhang, Qifei Li, Mingjie Tang, Han Zhang, Xiaoping Sun, Sige Zou, Judy L. Jensen, Theodore G. Liou, Anhong Zhou Dec 2019

A Multi-Scale Approach To Study Biochemical And Biophysical Aspects Of Resveratrol On Diesel Exhaust Particle-Human Primary Lung Cell Interaction, Wei Zhang, Qifei Li, Mingjie Tang, Han Zhang, Xiaoping Sun, Sige Zou, Judy L. Jensen, Theodore G. Liou, Anhong Zhou

Biological Engineering Faculty Publications

Diesel exhaust particles (DEPs) are major air pollutants that lead to numerous human disorders, especially pulmonary diseases, partly through the induction of oxidative stress. Resveratrol is a polyphenol that ameliorates the production of reactive oxygen species (ROS) and delays aging-related processes. Herein we studied the cytoprotective effect of resveratrol on DEP-exposed human lung cells in a factorial experimental design. This work investigates biophysical features including cellular compositions and biomechanical properties, which were measured at the single-cell level using confocal Raman microspectroscopy (RM) and atomic force microscopy (AFM), respectively. Principal component analysis (PCA), hierarchical cluster analysis (HCA) and partial least square …


Expression Systems For Synthetic Spider Silk Protein Production, Michaela R. Hugie Dec 2019

Expression Systems For Synthetic Spider Silk Protein Production, Michaela R. Hugie

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Spider silk is a biodegradable and biocompatible natural material that is stronger than steel and more elastic than nylon. These properties make spider silk a desirable material for many commercial products, ranging from textiles to biomedical materials. Due to spiders’ cannibalistic and territorial nature it is impossible to farm them to produce spider silk at a high enough yield to meet product demands. Therefore, a bioengineered synthetic process is necessary to produce spider silk. Synthetic spider silk has been produced in bacteria, goats, yeast, plants, mammalian cells and silkworms, but none of these processes provided a commercially viable yield or …


Milk Oligopeptide Inhibition Of (Α)-Tocopherol Fortified Linoleic Acid Oxidation, Haina Yuan, Jinyan Gong, Kun Tang, Jinge Huang, Gongnian Xiao, Jianmin Lv Sep 2019

Milk Oligopeptide Inhibition Of (Α)-Tocopherol Fortified Linoleic Acid Oxidation, Haina Yuan, Jinyan Gong, Kun Tang, Jinge Huang, Gongnian Xiao, Jianmin Lv

Biological Engineering Student Research

This study investigated the effect of milk oligopeptides and (α)-tocopherol on inhibition of linoleic acid oxidation using Fe2+-vitamin C induced linoleic acid oxidation model through analysis of malondialdehyde, peroxide value, and conjugated diene and triene in the model. The alteration of milk oligopeptides maximal absorption wavelength, fluorescent feature, and secondary structure were further investigated to elucidate the interactions between milk oligopeptide and (α)-tocopherol that altered the inhibitory effect of linoleic acid oxidation. Results showed that Pro-Tyr-Tyr-Ala-Lys (PYYAK) and Ile-Pro-Ile-Gln-Tyr (IPIQY) with (α)-tocopherol significantly inhibited the oxidation of linoleic acid and reduced the formation of malondialdehyde by 38% and …


Monitoring Silane Sol-Gel Kinetics With In-Situ Optical Turbidity Scanning And Dynamic Light Scattering, Abul Bashar Mohammad Giasuddin, David W. Britt Aug 2019

Monitoring Silane Sol-Gel Kinetics With In-Situ Optical Turbidity Scanning And Dynamic Light Scattering, Abul Bashar Mohammad Giasuddin, David W. Britt

Biological Engineering Faculty Publications

Organosilanes (e.g., R’-SiOR3) provide hydrophobic functionality in thin-film coatings, porous gels, and particles. Compared with tetraalkoxysilanes (SiOR4), organosilanes exhibit distinct reaction kinetics and assembly mechanisms arising from steric and electronic properties of the R’ group on the silicon atom. Here, the hydrolysis and condensation pathways of n-propyltrimethoxy silane (nPM) and a tri-fluorinated analog of nPM, 3,3,3-trifluoropropyl trimethoxy silane (3F), were investigated under aqueous conditions at pH 1.7, 2.0, 3.0, and 4.0. Prior to hydrolysis, 3F and nPM are insoluble in water and form a lens at the bottom (3F) or top (nPM) of the solutions. This …


Workshop On Convergence In Biological Engineering, Keith Roper Aug 2019

Workshop On Convergence In Biological Engineering, Keith Roper

Funded Research Records

No abstract provided.


Application Of Micro-Scale 3d Printing In Pharmaceutics, Andrew Kjar, Yu Huang Aug 2019

Application Of Micro-Scale 3d Printing In Pharmaceutics, Andrew Kjar, Yu Huang

Biological Engineering Faculty Publications

3D printing, as one of the most rapidly-evolving fabrication technologies, has released a cascade of innovation in the last two decades. In the pharmaceutical field, the integration of 3D printing technology has offered unique advantages, especially at the micro-scale. When printed at a micro-scale, materials and devices can provide nuanced solutions to controlled release, minimally invasive delivery, high-precision targeting, biomimetic models for drug discovery and development, and future opportunities for personalized medicine. This review aims to cover the recent advances in this area. First, the 3D printing techniques are introduced with respect to the technical parameters and features that are …


Investigation Of The Biosynthetic Process Of Indigoidine, Yi Chen Aug 2019

Investigation Of The Biosynthetic Process Of Indigoidine, Yi Chen

All Graduate Plan B and other Reports, Spring 1920 to Spring 2023

Indigoidine is a natural blue dye with antioxidant and antimicrobial activities. It has also been used as an indicator for gene expression based on its distinctive blue color. Similar to the industry blue dye indigo, indigoidine has a promising potential to be applied in industry as a blue dye. However, the indigoidine production level in the original microorganisms was very low. Heterologous expression of the responsible synthetase gene in Escherichia coli can facilitate the fast and large-scale production of indigoidine. Also, a good understating of the working mechanism of the synthetase is favorable for the industrial application.

In our previous …


Discovery And Engineering Of An Endophytic Pseudomonas Strain From Taxus Chinensis For Efficient Production Of Zeaxanthin Diglucoside, Ozkan Fidan, Jixun Zhan Aug 2019

Discovery And Engineering Of An Endophytic Pseudomonas Strain From Taxus Chinensis For Efficient Production Of Zeaxanthin Diglucoside, Ozkan Fidan, Jixun Zhan

Biological Engineering Faculty Publications

Background

Endophytic microorganisms are a rich source of bioactive natural products. They are considered as promising biofertilizers and biocontrol agents due to their growth-promoting interactions with the host plants and their bioactive secondary metabolites that can help manage plant pathogens. Identification of new endophytes may lead to the discovery of novel molecules or provide new strains for production of valuable compounds.

Results

In this study, we isolated an endophytic bacterium from the leaves of Taxus chinensis, which was identified as Pseudomonas sp. 102515 based on the 16S rRNA gene sequence and physiological characteristics. Analysis of its secondary metabolites revealed …


Spiderworms: Using Silkworms As Hosts To Produce A Hybrid Silkworm-Spider Silk Fiber, Ana Laura Licon Aug 2019

Spiderworms: Using Silkworms As Hosts To Produce A Hybrid Silkworm-Spider Silk Fiber, Ana Laura Licon

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Spider silk has received significant attention due to its fascinating mechanical properties. Given the solitary and cannibalistic behavior of spiders, spider silk farming is impractical. Unlike spiders, silkworms are capable of producing large quantities of a fibrous product in a manner mimetic to spiders, and there already exists an industry to process cocoons into threads and textiles for many applications. The combination of silk farming (sericulture), a millennia old practice, and modern advancements in genetic engineering has given rise to an innovative biomaterial inspired by nature; transgenic silkworm silk.

This project focuses on the creation of chimeric silkworm-spider silk fibers …


Optimization Of Biogas Production By Use Of A Microbially Enhanced Inoculum, Anna Doloman Aug 2019

Optimization Of Biogas Production By Use Of A Microbially Enhanced Inoculum, Anna Doloman

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

A renewable energy source, biogas, comprises of methane (80%) and carbon dioxide (15%), and is a great alternative to the conventional fossil-based fuels, such as coal, gas and oil. Biogas is created during anaerobic biological digestion of waste materials, such as landfill material, animal manure, wastewater, algal biomass, industrial organic waste etc. A biogas potential from organic waste in the United States is estimated at about 9 million tons per year and technology allows capture of greenhouse gases, such as methane and carbon dioxide, into a form of a fuel. In the light of global climate change and efforts to …


Characterization Of Biofilms In A Synthetic Rhizosphere Using Hollow Fiber Root-Mimetic Systems, Michelle Bonebrake Aug 2019

Characterization Of Biofilms In A Synthetic Rhizosphere Using Hollow Fiber Root-Mimetic Systems, Michelle Bonebrake

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The area around a plant’s roots hosts a complex and diverse microbial community. This environment can include a large number of bacteria that live on the surface of the root and benefit from the nutrients that the roots exude into the soil. These microbes can in turn be beneficial to the plant by protecting the roots from harmful fungi or stressful environmental conditions such as drought. In this thesis, several root-mimetic systems (RMSs) were developed for the study and growth of plant-beneficial bacteria in the laboratory environment. The RMS uses a porous hollow fiber used in hemodialysis as a surface …


Exploring The Capacity Of Bacteria For Natural Product Biosynthesis, Ozkan Fidan Aug 2019

Exploring The Capacity Of Bacteria For Natural Product Biosynthesis, Ozkan Fidan

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

This dissertation is focused on exploring the potential of bacteria for the biosynthesis of natural products with the purposes of generating novel natural product derivatives and of improving the titer of pharmaceutically important natural products.

A wide variety of compounds from various sources have been historically used in the treatment and prevention of diseases. Natural products as a major source of new drugs are extensively explored due to their huge structural diversity and promising biological activities such as antimicrobial, anticancer, antifungal, antiviral and antioxidant properties. For instance, penicillin as an early-discovered antimicrobial agent has saved millions of lives, indicating the …


Modified Substrate Specificity Of A Methyltransferase Domain By Protein Insertion Into An Adenylation Domain Of The Bassianolide Synthetase, Fuchao Xu, Russell Butler, Kyle M. May, Megi Rexhepaj, Dayu Yu, Jiachen Zi, Yi Chen, Yonghong Liang, Jia Zeng, Joan Hevel, Jixun Zhan Jul 2019

Modified Substrate Specificity Of A Methyltransferase Domain By Protein Insertion Into An Adenylation Domain Of The Bassianolide Synthetase, Fuchao Xu, Russell Butler, Kyle M. May, Megi Rexhepaj, Dayu Yu, Jiachen Zi, Yi Chen, Yonghong Liang, Jia Zeng, Joan Hevel, Jixun Zhan

Chemistry and Biochemistry Faculty Presentations

Background: Creating designer molecules using a combination of select domains from polyketide synthases and/or nonribosomal peptide synthetases (NRPS) continues to be a synthetic goal. However, an incomplete understanding of how protein-protein interactions and dynamics affect each of the domain functions stands as a major obstacle in the field. Of particular interest is understanding the basis for a class of methyltransferase domains (MT) that are found embedded within the adenylation domain (A) of fungal NRPS systems instead of in an end-to-end architecture.

Results: The MT domain from bassianolide synthetase (BSLS) was removed and the truncated enzyme BSLS-ΔMT was recombinantly expressed. The …


Microwave Assisted Sol-Gel Synthesis Of Silica-Spider Silk Composites, Abul Bashar Mohammad Giasuddin, David W. Britt Jul 2019

Microwave Assisted Sol-Gel Synthesis Of Silica-Spider Silk Composites, Abul Bashar Mohammad Giasuddin, David W. Britt

Biological Engineering Faculty Publications

This study introduces a simple and environmentally friendly method to synthesize silica-protein nanocomposite materials using microwave energy to solubilize hydrophobic protein in an aqueous solution of pre-hydrolyzed organo- or fluoro-silane. Sol-gel functionality can be enhanced through biomacromolecule incorporation to tune mechanical properties, surface energy, and biocompatibility. Here, synthetic spider silk protein and organo- and fluoro-silane precursors were dissolved and mixed in weakly acidic aqueous solution using microwave technology. Scanning electron microscopy (SEM) and Atomic force microscopy (AFM) images revealed the formation of spherical nanoparticles with sizes ranging from 100 to 500 nm depending, in part, on silane fluoro- or organo-side …


Unravel The Cellular Biophysical Dynamics Of Spatial Constraint-Induced Membrane Blebbing And 3d Migration Using A Microfluidic Platform And Data-Driven Mathematical Modeling, Yu Huang Jun 2019

Unravel The Cellular Biophysical Dynamics Of Spatial Constraint-Induced Membrane Blebbing And 3d Migration Using A Microfluidic Platform And Data-Driven Mathematical Modeling, Yu Huang

Funded Research Records

No abstract provided.


Cell Imaging And Data Analysis For Biomaterial-Mammalian Co-Cultures, Jefferson Pontsler May 2019

Cell Imaging And Data Analysis For Biomaterial-Mammalian Co-Cultures, Jefferson Pontsler

All Graduate Plan B and other Reports, Spring 1920 to Spring 2023

Microscopic bioimaging is a useful approach to study cell-biomaterial interactions which are vital to the biomedical application of biomaterials. Through microscopic imaging, numerous cellular responses, such as proliferation, uptake, and death, can be recorded, characterized and analyzed.

In this thesis, I first provided basic introductions to the imaging techniques and analysis tools, especially those that are highly relevant to the studies of biomaterials and cell interactions. I also detailed the adaptation of these techniques and tools in the application of two specific research projects in biomaterials, with special focuses on the imaging and analysis.

The first project assessed the subtle …


Hydrodeoxygenation Of Pinyon-Juniper Catalytic Pyrolysis Oil, Hossein Jahromi May 2019

Hydrodeoxygenation Of Pinyon-Juniper Catalytic Pyrolysis Oil, Hossein Jahromi

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Catalytic hydrodeoxygenation (HDO), is an effective process to convert oxygenated compounds to hydrocarbons. This process is widely used for improving the negative properties of biomass-derived pyrolysis oils (bio-oils) such as high acidity, poor stability, and low heating value. During this process oxygen is removed from the bio-oil in the form of water, thus the liquid product of HDO process consists of aqueous phase and hydrocarbon phase that can be easily separated. Synthesis of efficient HDO catalyst has been a major challenge in the field of bio-oil upgrading. Red mud, which is an alkaline waste from alumina industry was used to …


In Vitro Simulation Of Microgravity Induced Muscle Loss Successfully Increases Expression Of Key In Vivo Atrophy Markers, Charles P. Harding May 2019

In Vitro Simulation Of Microgravity Induced Muscle Loss Successfully Increases Expression Of Key In Vivo Atrophy Markers, Charles P. Harding

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Muscle loss from lack of activity is a serious issue for immobilized patients on Earth and in human spaceflight, where the low gravity environment prevents normal muscle activity. Simulating muscle loss in cultured cells is an important step in understanding how this condition occurs. This work evaluates different means of simulating muscle loss and selects the one that most closely mimics the cellular responses seen in animals and humans.

To simulate the microgravity environment of spaceflight, mouse skeletal muscle cells were grown in a rotary cell culture system (RCCS). Growing the cells within a natural gelled substrate was compared against …


Improved Production Of Antifungal Angucycline Sch47554 By Manipulating Three Regulatory Genes In Streptomyces Sp. Scc-2136, Ozkan Fidan, Riming Yan, Du Zhu, Jixun Zhan Apr 2019

Improved Production Of Antifungal Angucycline Sch47554 By Manipulating Three Regulatory Genes In Streptomyces Sp. Scc-2136, Ozkan Fidan, Riming Yan, Du Zhu, Jixun Zhan

Biological Engineering Faculty Publications

Sch47554 and Sch47555 are two angucyclines with antifungal activities against various yeasts and dermatophytes from Streptomyces sp. SCC‐2136. The schgene cluster contains several putative regulatory genes. Both schA4 and schA21were predicted as the TetR family transcriptional regulators, whereas schA16shared significant similarity to the AraC family transcriptional regulators. Although Sch47554 is the major product of Streptomyces sp. SCC‐2136, its titer is only 6.72 mg/L. This work aimed to increase the production of this promising antifungal compound by investigating and manipulating the regulatory genes in the Sch47554 biosynthetic pathway. Disruption of schA4and schA16 led to a significant increase …


Use Of Surface-Enhanced Raman Scattering (Sers) Probes To Detect Fatty Acid Receptor Activity In A Microfluidic Device, Han Zhang, Wei Zhang, Lifu Xiao, Yan Liu, Timothy A. Gilbertson, Anhong Zhou Apr 2019

Use Of Surface-Enhanced Raman Scattering (Sers) Probes To Detect Fatty Acid Receptor Activity In A Microfluidic Device, Han Zhang, Wei Zhang, Lifu Xiao, Yan Liu, Timothy A. Gilbertson, Anhong Zhou

Biological Engineering Faculty Publications

In this study, 4-mercaptobenzoic acid (MBA)-Au nanorods conjugated with a GPR120 antibody were developed as a highly sensitive surface-enhanced Raman spectroscopy (SERS) probe, and were applied to detect the interaction of fatty acids (FA) and their cognate receptor, GPR120, on the surface of human embryonic kidney cells (HEK293-GPRR120) cultured in a polydimethylsiloxane (PDMS) microfluidic device. Importantly, the two dominant characteristic SERS peaks of the Raman reporter molecule MBA, 1078 cm−1 and 1581 cm−1, do not overlap with the main Raman peaks from the PDMS substrate when the appropriate spectral scanning range is selected, which effectively avoided the …


Develop A 3d Neurological Disease Model Of Human Cortical Glutamatergic Neurons Using Micropillar-Based Scaffolds, Cheng Chen, Xin Dong, Kai-Heng Fang, Fang Yuan, Yao Hu, Min Xu, Yu Huang, Xixiang Zhang, Danjun Fang, Yan Liu Mar 2019

Develop A 3d Neurological Disease Model Of Human Cortical Glutamatergic Neurons Using Micropillar-Based Scaffolds, Cheng Chen, Xin Dong, Kai-Heng Fang, Fang Yuan, Yao Hu, Min Xu, Yu Huang, Xixiang Zhang, Danjun Fang, Yan Liu

Biological Engineering Faculty Publications

Establishing an effective three-dimensional (3D) in vitro culture system to better model human neurological diseases is desirable, since the human brain is a 3D structure. Here, we demonstrated the development of a polydimethylsiloxane (PDMS) pillar-based 3D scaffold that mimicked the 3D microenvironment of the brain. We utilized this scaffold for the growth of human cortical glutamatergic neurons that were differentiated from human pluripotent stem cells. In comparison with the 2D culture, we demonstrated that the developed 3D culture promoted the maturation of human cortical glutamatergic neurons by showing significantly more MAP2 and less Ki67 expression. Based on this 3D culture …


Identification Of New Glutamate Decarboxylases From Streptomyces For Efficient Production Of Γ-Aminobutyric Acid In Engineered Escherichia Coli, Haina Yuan, Hongbo Wang, Ozkan Fidan, Yong Qin, Gongnian Xiao, Jixun Zhan Mar 2019

Identification Of New Glutamate Decarboxylases From Streptomyces For Efficient Production Of Γ-Aminobutyric Acid In Engineered Escherichia Coli, Haina Yuan, Hongbo Wang, Ozkan Fidan, Yong Qin, Gongnian Xiao, Jixun Zhan

Biological Engineering Faculty Publications

Background

Gamma (γ)-Aminobutyric acid (GABA) as a bioactive compound is used extensively in functional foods, pharmaceuticals and agro-industry. It can be biosynthesized via decarboxylation of monosodium glutamate (MSG) or L-glutamic acid (L-Glu) by glutamate decarboxylase (GAD; EC4.1.1.15). GADs have been identified from a variety of microbial sources, such as Escherichia coli and lactic acid bacteria. However, no GADs from Streptomyces have been characterized. The present study is aimed to identify new GADs from Streptomyces strains and establish an efficient bioproduction platform for GABA in E. coli using these enzymes.

Results

By sequencing and analyzing the genomes of three Streptomycesstrains, …


Improving Wastewater Treatment Using Algal Biofilms And Bioenergy, Nathan Guymon Mar 2019

Improving Wastewater Treatment Using Algal Biofilms And Bioenergy, Nathan Guymon

Research on Capitol Hill

This project represents a collaboration between Utah State University, Central Valley Water Reclamation Facility (CVWRF), and WesTech Engineering, Inc. The goal of the project is to help water treatment plants meet state nutrient standards and reduce operating costs. This is being accomplished in three major sections:

1. Wastewater treatment – microalgae is grown to remove nitrogen and phosphorus from water.

2. Biogas generation – the microalgae is harvested and processed to produce methane gas used to generate power.

3. Fertilizer production – nutrients are also collected from the wastewater and turned into high-value fertilizer.

By creating systems that remove nutrients …


Muscle Atrophy Marker Expression Differs Between Rotary Cell Culture System And Animal Studies, Charles P. Harding, Elizabeth Vargis Feb 2019

Muscle Atrophy Marker Expression Differs Between Rotary Cell Culture System And Animal Studies, Charles P. Harding, Elizabeth Vargis

Biological Engineering Faculty Publications

Muscular atrophy, defined as the loss of muscle tissue, is a serious issue for immobilized patients on Earth and for humans during spaceflight, where microgravity prevents normal muscle loading. In vitro modeling is an important step in understanding atrophy mechanisms and testing countermeasures before animal trials. The most ideal environment for modeling must be empirically determined to best mimic known responses in vivo. To simulate microgravity conditions, murine C2C12 myoblasts were cultured in a rotary cell culture system (RCCS). Alginate encapsulation was compared against polystyrene microcarrier beads as a substrate for culturing these adherent muscle cells. Changes after culture …