Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Marquette University

Dissertations (1934 -)

Discipline
Keyword
Publication Year

Articles 1 - 30 of 43

Full-Text Articles in Biomedical Engineering and Bioengineering

Eeg Characterization Of Sensorimotor Networks: Implications In Stroke, Dylan Blake Snyder Apr 2020

Eeg Characterization Of Sensorimotor Networks: Implications In Stroke, Dylan Blake Snyder

Dissertations (1934 -)

The purpose of this dissertation was to use electroencephalography (EEG) to characterize sensorimotor networks and examine the effects of stroke on sensorimotor networks. Sensorimotor networks play an essential role in completion of everyday tasks, and when damaged, as in stroke survivors, the successful completion of seemingly simple motor tasks becomes fantasy. When sensorimotor networks are impaired as a result of stroke, varying degrees of sensorimotor deficits emerge, most often including loss of sensation and difficulty generating upper extremity movements. Although sensory therapies, such as the application of tendon vibration, have been shown to reduce the sensorimotor deficits after stroke, the …


Patient-Specific Modeling Of Altered Coronary Artery Hemodynamics To Predict Morbidity In Patients With Anomalous Origin Of A Coronary Artery, Atefeh Razavi Apr 2020

Patient-Specific Modeling Of Altered Coronary Artery Hemodynamics To Predict Morbidity In Patients With Anomalous Origin Of A Coronary Artery, Atefeh Razavi

Dissertations (1934 -)

Anomalous aortic origin of a coronary artery (AAOCA) is a condition where a coronary artery arises from the opposite aortic sinus, often with acute angle of origin (AO). AAOCA is associated with ischemia.1 This is especially concerning when the anomalous coronary artery takes an intramural course within the aortic wall, creating the potential for distortion or compression. Unroofing surgery replaces a restrictive ostium and intramural segment with a large ostium from the appropriate sinus and aims to create a less acute AO. Although these anatomical features may alter coronary artery blood flow patterns, hemodynamic indices such as time averaged wall …


Reaching Performance In Heathy Individuals And Stroke Survivors Improves After Practice With Vibrotactile State Feedback, Valay A. Shah Apr 2020

Reaching Performance In Heathy Individuals And Stroke Survivors Improves After Practice With Vibrotactile State Feedback, Valay A. Shah

Dissertations (1934 -)

Stroke causes deficits of cognition, motor, and/or somatosensory functions. These deficits degrade the capability to perform activities of daily living (ADLs). Many research investigations have focused on mitigating the motor deficits of stroke through motor rehabilitation. However, somatosensory deficits are common and may contribute importantly to impairments in the control of functional arm movement. This dissertation advances the goal of promoting functional motor recovery after stroke by investigating the use of a vibrotactile feedback (VTF) body-machine interface (BMI). The VTF BMI is intended to improve control of the contralesional arm of stroke survivors by delivering supplemental limb-state feedback to the …


Characterization Of Neuroimage Coupling Between Eeg And Fmri Using Within-Subject Joint Independent Component Analysis, Nicholas Heugel Apr 2020

Characterization Of Neuroimage Coupling Between Eeg And Fmri Using Within-Subject Joint Independent Component Analysis, Nicholas Heugel

Dissertations (1934 -)

The purpose of this dissertation was to apply joint independent component analysis (jICA) to electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) to characterize the neuroimage coupling between the two modalities. EEG and fMRI are complimentary imaging techniques which have been used in conjunction to investigate neural activity. Understanding how these two imaging modalities relate to each other not only enables better multimodal analysis, but also has clinical implications as well. In particular, Alzheimer’s, Parkinson’s, hypertension, and ischemic stroke are all known to impact the cerebral blood flow, and by extension alter the relationship between EEG and fMRI. By characterizing …


Indirect Structural Connectivity As A Biomarker For Stroke Motor Recovery, Miguel Renato Sotelo Munoz Apr 2020

Indirect Structural Connectivity As A Biomarker For Stroke Motor Recovery, Miguel Renato Sotelo Munoz

Dissertations (1934 -)

In this dissertation project, we demonstrated that diffusion magnetic resonance imaging and measures of indirect structural brain connectivity are sensitive to changes in fiber integrity and connectivity to remote regions in the brain after stroke. Our results revealed new insights into the effects local lesions have on global connectivity—in particular, the cerebellum—and how these changes in connectivity and integrity relate to motor impairment. We tested this methodology on two stroke groups—subacute and chronic—and were able to show that indirect connectivity is sensitive to differences in connectivity during stroke recovery. Our work can inform clinical methods for rehabilitating motor function in …


Motion Artifact Evaluation Of Coronary Ct Angiography Images, Hongfeng Ma Oct 2017

Motion Artifact Evaluation Of Coronary Ct Angiography Images, Hongfeng Ma

Dissertations (1934 -)

The objective of this dissertation was to develop and validate an automated algorithm to quantify motion artifact level on coronary CT angiography (CCTA) images. Unlike existing motion artifact reduction techniques that evaluate the relative level of motion artifacts within one exam, this dissertation aims to quantify the absolute level of motion artifacts across exams from varying patients. The ability to quantify absolute motion artifact level enables several potential applications, for example, assessing and comparing two motion artifact reduction techniques. This dissertation includes three specific aims. Aim 1 investigated the absolute motion artifact quantification effectiveness of six motion artifact metrics using …


Muscle Coordination Contributes To Function After Stroke; Proprioception Contributes To Control Of Posture, Movement, Maria Bengtson Oct 2017

Muscle Coordination Contributes To Function After Stroke; Proprioception Contributes To Control Of Posture, Movement, Maria Bengtson

Dissertations (1934 -)

More than half of stroke survivors experience persistent upper extremity motor impairments that can negatively impact quality of life and independence. Effective use of the upper extremity requires coordination of agonist/antagonist muscle pairs, as well as coordination of multiple control actions for stabilizing and moving the arm. In this dissertation, I present three studies in which I recorded isometric torque production, single joint movement and stabilization, and clinical measures of function and impairments after stroke to evaluate the extent to which changes in coordination of agonist/antagonist muscles and of sequential control actions contribute to deficits after stroke. In Aim 1, …


Markerless Kinematics Of Pediatric Manual Wheelchair Mobility, Jacob Robert Rammer Jul 2017

Markerless Kinematics Of Pediatric Manual Wheelchair Mobility, Jacob Robert Rammer

Dissertations (1934 -)

Pediatric manual wheelchair users face substantial risk of orthopaedic injury to the upper extremities, particularly the shoulders, during transition to wheelchair use and during growth and development. Propulsion strategy can influence mobility efficiency, activity participation, and quality of life. The current forefront of wheelchair biomechanics research includes translating findings from adult to pediatric populations, improving the quality and efficiency of care under constrained clinical funding, and understanding injury mechanisms and risk factors. Typically, clinicians evaluate wheelchair mobility using marker-based motion capture and instrumentation systems that are precise and accurate but also time-consuming, inconvenient, and expensive for repeated assessments. There is …


Cortical Oscillations During A Lateral Balance Perturbation While Walking, Joseph Lee Oct 2016

Cortical Oscillations During A Lateral Balance Perturbation While Walking, Joseph Lee

Dissertations (1934 -)

The role of sensory systems in the cortical control of dynamic balance was examined using electroencephalography (EEG) recordings during balance perturbations while walking. Specifically, we examined the impact of sensory deficits on cortical oscillations using vibratory stimuli to suppress sensory feedback and by comparing cortical oscillations during balance perturbations while walking in people with sensory deficits associated with cervical myelopathy and neurologically intact controls. Balance during walking provides a rich framework for investigating cortical control using EEG during a functionally relevant task. While this approach is promising, substantial technical challenges remain in recording and processing EEG in the noisy, artifact …


A Fourier Description Of Covariance, And Separation Of Simultaneously Encoded Slices With In-Plane Acceleration In Fmri, Mary C. Kociuba Oct 2016

A Fourier Description Of Covariance, And Separation Of Simultaneously Encoded Slices With In-Plane Acceleration In Fmri, Mary C. Kociuba

Dissertations (1934 -)

Functional magnetic resonance imaging (fMRI) studies aim to identify localized neural regions associated with a cognitive task performed by the subject. An indirect measure of the brain activity is the blood oxygenation level dependent (BOLD) signal fluctuations observed within the complex-valued spatial frequencies measured over time. The standard practice in fMRI is to discard the phase information after image reconstruction, even with evidence of biological task-related change in the phase time-series. In the first aim of this dissertation, a complex-valued time-series covariance is derived as a linear combination of second order temporal Fourier frequency coefficients. As opposed to magnitude-only analysis, …


Structural-Functional Brain Connectivity Underlying Integrative Sensorimotor Function After Stroke, Benjamin Thomas Kalinosky Apr 2016

Structural-Functional Brain Connectivity Underlying Integrative Sensorimotor Function After Stroke, Benjamin Thomas Kalinosky

Dissertations (1934 -)

In this dissertation research project, we demonstrated the relationship between the structural and functional connections across the brain in stroke survivors. We used this information to predict arm function in stroke survivors, suggesting that the tools developed through this research will be useful for prescribing individualized rehabilitation strategies in people after stroke. Current clinical methods for rehabilitating sensorimotor function after stroke are not based on the locus of injury in the brain. Instead, therapies are generalized, treating symptoms such as weakness and spasticity. This results in outcomes that are highly variable, with severity of impairment immediately following stroke as the …


Injury Risk Assessment Of The Femur In Children With Osteogenesis Imperfecta, Jessica Marie Fritz Apr 2016

Injury Risk Assessment Of The Femur In Children With Osteogenesis Imperfecta, Jessica Marie Fritz

Dissertations (1934 -)

Osteogenesis imperfecta (OI) is a genetic disorder characterized by increased bone fragility and decreased bone mass, which leads to high rates of bone fracture. OI has a prevalence of 1/5,000 to 1/10,000 in the United States. About 90% of persons with OI have a genetic mutation in the coding for collagen type I, which is the major protein of connective tissues, including bone. While its prevalence classifies it as a rare disease, it is the most common disorder of bone etiology. Until recently, little was known about the mechanics and materials of OI bone or their impact on fracture risk. …


Noninvasive Assessment Of Photoreceptor Structure And Function In The Human Retina, Robert Francis Cooper Oct 2015

Noninvasive Assessment Of Photoreceptor Structure And Function In The Human Retina, Robert Francis Cooper

Dissertations (1934 -)

The human photoreceptor mosaic underlies the first steps of vision; thus, even subtle defects in the mosaic can result in severe vision loss. The retina can be examined directly using clinical tools; however these devices lack the resolution necessary to visualize the photoreceptor mosaic. The primary limiting factor of these devices is the optical aberrations of the human eye. These aberrations are surmountable with the incorporation of adaptive optics (AO) to ophthalmoscopes, enabling imaging of the photoreceptor mosaic with cellular resolution. Despite the potential of AO imaging, much work remains before this technology can be translated to the clinic. Metrics …


Computational Approaches For Remote Monitoring Of Symptoms And Activities, Ferdaus Kawsar Oct 2015

Computational Approaches For Remote Monitoring Of Symptoms And Activities, Ferdaus Kawsar

Dissertations (1934 -)

We now have a unique phenomenon where significant computational power, storage, connectivity, and built-in sensors are carried by many people willingly as part of their life style; two billion people now use smart phones. Unique and innovative solutions using smart phones are motivated by rising health care cost in both the developed and developing worlds. In this work, development of a methodology for building a remote symptom monitoring system for rural people in developing countries has been explored. Design, development, deployment, and evaluation of e-ESAS is described. The system’s performance was studied by analyzing feedback from users. A smart phone …


Biomechanical Characerization And Evaluation Of Conservative Clubfoot Correction, Tamara Loren Cohen Oct 2015

Biomechanical Characerization And Evaluation Of Conservative Clubfoot Correction, Tamara Loren Cohen

Dissertations (1934 -)

Congential talipes equinovarus, or clubfoot, affects approximately 200,000 newborns worldwide each year and presents with equinovarus of the hindfoot, as well as cavus and adduction of the midfoot. In addition to bone malformation and displacement, soft tissue contractures encapsulate the medial and posterior aspects of the affected foot. The Ponseti method is a conservative treatment that progressively repositions the clubfoot through weekly casting, followed by bracing. Concerns exist regarding the variability in outcomes, resistance to treatment, and risk of relapse, which occur in approximately 10% of the population. Potential factors contributing to variability and resistant clubfoot include cast material performance, …


Biplanar Fluoroscopic Analysis Of In Vivo Hindfoot Kinematics During Ambulation, Janelle Ann Cross Jul 2015

Biplanar Fluoroscopic Analysis Of In Vivo Hindfoot Kinematics During Ambulation, Janelle Ann Cross

Dissertations (1934 -)

The overall goal of this project was to develop and validate a biplanar fluoroscopic system and integrated software to assess hindfoot kinematics. Understanding the motion of the foot and ankle joints may lead to improved treatment methods in persons with foot and ankle pathologies. During gait analysis, skin markers are placed on the lower extremities, which are defined as four rigid-body segments with three joints representing the hip, knee and ankle. This method introduces gross assumptions on the foot and severely limits the analysis of in depth foot mechanics. Multi-segmental models have been developed, but are susceptible to skin motion …


Multimodal Sensory Integration For Perception And Action In High Functioning Children With Autism Spectrum Disorder, Nicole Marie Gregor Salowitz Apr 2015

Multimodal Sensory Integration For Perception And Action In High Functioning Children With Autism Spectrum Disorder, Nicole Marie Gregor Salowitz

Dissertations (1934 -)

Movement disorders are the earliest observed features of autism spectrum disorder (ASD) present in infancy. Yet we do not understand the neural basis for impaired goal-directed movements in this population. To reach for an object, it is necessary to perceive the state of the arm and the object using multiple sensory modalities (e.g. vision, proprioception), to integrate those sensations into a motor plan, to execute the plan, and to update the plan based on the sensory consequences of action. In this dissertation, I present three studies in which I recorded hand paths of children with ASD and typically developing (TD) …


Identification And Retraining Of Sensorimotor Deficits To Reduce Intention Tremor In Multiple Sclerosis, Megan Heenan Apr 2015

Identification And Retraining Of Sensorimotor Deficits To Reduce Intention Tremor In Multiple Sclerosis, Megan Heenan

Dissertations (1934 -)

Multiple sclerosis (MS) affects approximately 1 in 1000 Americans and is a significant cause of disability in the United States. One significant contributor to disability in MS is intention tremor, which manifests as an oscillation about the endpoint of a goal-directed movement. A major challenge of treating intention tremor is that the underlying causes of tremor in MS are unknown. In this study, we describe a systems-level computational model and an experimental technique that parameterizes subject-specific deficits in sensory feedback control during goal-directed movements. We used this approach to characterize sensorimotor control and examine how sensory and motor processes are …


A Subject-Specific Multiscale Model Of Transcranial Magnetic Stimulation, Brian Daniel Goodwin Oct 2014

A Subject-Specific Multiscale Model Of Transcranial Magnetic Stimulation, Brian Daniel Goodwin

Dissertations (1934 -)

Transcranial magnetic stimulation (TMS) is a neuromodulation technique used to treat a variety of neurological disorders. While many types of neuromodulation therapy are invasive, TMS is an attractive alternative because it is noninvasive and has a very strong safety record. However, clinical use of TMS has preceded a thorough scientific understanding: its mechanisms of action remain elusive, and the spatial extent of modulation is not well understood. We created a subject-specific, multiscale computational model to gain insights into the physiological response during motor cortex TMS. Specifically, we developed an approach that integrates three main components: 1) a high-resolution anatomical MR …


Characterization Of Bone Material Properties And Microstructure In Osteogenesis Imperfecta/Brittle Bone Disease, John Robert Jameson Oct 2014

Characterization Of Bone Material Properties And Microstructure In Osteogenesis Imperfecta/Brittle Bone Disease, John Robert Jameson

Dissertations (1934 -)

Osteogenesis imperfecta (OI) is a genetic disorder primarily associated with mutations to type I collagen and resulting in mild to severe bone fragility. To date, there is very little data quantifying OI cortical bone mechanics. The purpose of this dissertation was to investigate bone microstructure, mineralization, and mechanical properties in adolescents with OI. Characterization studies were performed on small osteotomy specimens obtained from the extremities during routine corrective surgeries. Nanoindentation was used to examine the longitudinal elastic modulus and hardness at the material level for mild OI type I vs. severe OI type III. Both modulus and hardness were significantly …


Neuromodulation For Depression: Insights Gained From Neuroimaging And Computational Models, Yagna Pathak Oct 2014

Neuromodulation For Depression: Insights Gained From Neuroimaging And Computational Models, Yagna Pathak

Dissertations (1934 -)

Major depressive disorder (MDD) is a public health concern worldwide, affecting a sixth of the American population. Neuromodulation therapies have been employed to treat severe cases of treatment resistant depression. These procedures attempt to modulate activity in cortical regions that represent nodes in brain circuits believed to be involved in MDD. One challenge in neuromodulation trials has been the difficulty in quantifying outcome variability. We sought to understand the effects of neuromodulation therapies and their sources of variability while adding an objective perspective to assess clinical improvement in neuropsychiatric disorders such as depression. The goal of my dissertation was to …


Slow Potentials Of The Sensorimotor Cortex During Rhythmic Movements Of The Ankle, Ryan J. Mckindles Oct 2013

Slow Potentials Of The Sensorimotor Cortex During Rhythmic Movements Of The Ankle, Ryan J. Mckindles

Dissertations (1934 -)

The objective of this dissertation was to more fully understand the role of the human brain in the production of lower extremity rhythmic movements. Throughout the last century, evidence from animal models has demonstrated that spinal reflexes and networks alone are sufficient to propagate ambulation. However, observations after neural trauma, such as a spinal cord injury, demonstrate that humans require supraspinal drive to facilitate locomotion. To investigate the unique nature of lower extremity rhythmic movements, electroencephalography was used to record neural signals from the sensorimotor cortex during three cyclic ankle movement experiments. First, we characterized the differences in slow movement-related …


Dynamic Balance Control During Treadmill Walking In Chronic Stroke Survivors, Eric Richard Walker Oct 2013

Dynamic Balance Control During Treadmill Walking In Chronic Stroke Survivors, Eric Richard Walker

Dissertations (1934 -)

Maintaining dynamic balance is an important component of walking function that is likely impaired in chronic stroke survivors, evidenced by an increased prevalence of falls. Dynamic balance control requires maintaining the center of mass (COM) within the base of support during movement. During walking, dynamic balance control is achieved largely by modifying foot placement to adjust the base of support. However, chronic stroke survivors have difficulty with both precision control of foot placement, as well as reduced control of COM movement. The objective of this dissertation was to characterize dynamic balance control strategies during walking in chronic stroke survivors. Additionally, …


Novel Paradigms For Visual Field Mapping With Functional Magnetic Resonance Imaging, Yan Ma Sep 2013

Novel Paradigms For Visual Field Mapping With Functional Magnetic Resonance Imaging, Yan Ma

Dissertations (1934 -)

The overall goal of this study is to evaluate the existing, and develop new visual field mapping paradigms, which consist of visual stimulation scheme, post-processing and displaying tools using fMRI for both research and clinical applications.

We first directly compared phase mapping and random multifocal mapping paradigms with respect to clinically relevant factors. Multifocal mapping was superior in immunity to noise and was able to accurately decompose the response of single voxels to multiple stimulus locations. In contrast, phase mapping activated more extrastriate visual areas and was more efficient per run in achieving a statistically efficient response in a minimum …


Mechanisms Of Sensorimotor Impairment In Multiple Sclerosis, Matthew Cheeming Chua Jan 2013

Mechanisms Of Sensorimotor Impairment In Multiple Sclerosis, Matthew Cheeming Chua

Dissertations (1934 -)

Sensorimotor impairments in people with multiple sclerosis (MS) might alter coordination and balance strategy during functional movements. People with MS often have symptoms such as weakness and discoordination in the lower limbs, resulting in poor walking and balance function. This decrease in function can result in falls, decreased community activity, unemployment, and reduced quality of life. As MS is a progressive disease resulting in a range of dysfunction, the amount of lower limb impairment can cause changes to walking and balance strategies to maintain functional performance. The overall objective of this dissertation was to quantify the impairment at the hip …


Reducing Radiation Dose To The Female Breast During Conventional And Dedicated Breast Computed Tomography, Franco Rupcich Jan 2013

Reducing Radiation Dose To The Female Breast During Conventional And Dedicated Breast Computed Tomography, Franco Rupcich

Dissertations (1934 -)

The purpose of this study was to quantify the effectiveness of techniques intended to reduce dose to the breast during CT coronary angiography (CTCA) scans with respect to task-based image quality, and to evaluate the effectiveness of optimal energy weighting in improving contrast-to-noise ratio (CNR), and thus the potential for reducing breast dose, during energy-resolved dedicated breast CT.

A database quantifying organ dose for several radiosensitive organs irradiated during CTCA, including the breast, was generated using Monte Carlo simulations. This database facilitates estimation of organ-specific dose deposited during CTCA protocols using arbitrary x-ray spectra or tube-current modulation schemes without the …


Vascular Changes In Type 2 Diabetes Mellitus: Application To Restenosis After Stenting, Hongfeng Wang Jan 2013

Vascular Changes In Type 2 Diabetes Mellitus: Application To Restenosis After Stenting, Hongfeng Wang

Dissertations (1934 -)

Stents used to decrease cardiovascular risk in patients with type 2 diabetes mellitus (T2DM) are prone to increased rates of restenosis. The mechanisms are incompletely elucidated, but low wall shear stress (WSS) and altered intracellular signaling likely contribute. We tested the hypothesis that neointimal hyperplasia (NH) after bare-metal stenting is due to vascular remodeling (enhanced formation of advanced glycation end-products (AGEs), increased downstream vascular resistance (DVR), and decreased WSS), and that decreasing AGEs with ALT-711 (Alagebrium) mitigates this response.

Stents were implanted into the abdominal aorta of Zucker lean (ZL), obese (ZO), and diabetic (ZD) rats. After 21 days, the …


Diffusion Tensor Imaging Of The Central Nervous System Following An Injury To The Spinal Cord And Cell Transplant, Michael Jirjis Jan 2013

Diffusion Tensor Imaging Of The Central Nervous System Following An Injury To The Spinal Cord And Cell Transplant, Michael Jirjis

Dissertations (1934 -)

The purpose of this dissertation research was to characterize the use of magnetic resonance diffusion tensor imaging (DTI) as a diagnostic and prognostic tool in understanding the changes that occur throughout the spinal cord and brain following a spinal cord injury (SCI) and following stem cell transplant. The diffusion of water inside the nervous system is dramatically altered around the lesion site following a traumatic SCI. However, following damage to the spinal cord, little is known about the diffusion characteristics away from an injury and even less is understood about DTI's sensitivity to structural changes that occur following regenerative transplant …


Foot And Ankle Motion Analysis Using Dynamic Radiographic Imaging, Benjamin Donald Mchenry Jan 2013

Foot And Ankle Motion Analysis Using Dynamic Radiographic Imaging, Benjamin Donald Mchenry

Dissertations (1934 -)

Lower extremity motion analysis has become a powerful tool used to assess the dynamics of both normal and pathologic gait in a variety of clinical and research settings. Early rigid representations of the foot have recently been replaced with multi-segmental models capable of estimating intra-foot motion. Current models using externally placed markers on the surface of the skin are easily implemented, but suffer from errors associated with soft tissue artifact, marker placement repeatability, and rigid segment assumptions. Models using intra-cortical bone pins circumvent these errors, but their invasive nature has limited their application to research only. Radiographic models reporting gait …


Pedaling-Related Brain Activation In People Post-Stroke: An Fmri Study, Nutta-On Promjunyakul Oct 2012

Pedaling-Related Brain Activation In People Post-Stroke: An Fmri Study, Nutta-On Promjunyakul

Dissertations (1934 -)

This study aimed to enhance our understanding of supraspinal control of locomotion in stroke survivors and its relationship to locomotor impairment. We focused mainly on the locomotor component of walking, which involves rhythmic, reciprocal, flexion and extension movements of multiple joints in both legs. Functional magnetic resonance imaging (fMRI) was used to record human brain activity while pedaling was used as a model of locomotion. First, we examined the spatiotemporal characteristics of hemodynamic responses recorded with fMRI and found that they were different in stroke survivors and control subjects. However, these differences were not substantial enough to require altering the …