Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Neuron-Glial (Ng) Interactions: A Microfluidic Examination Of Ng Emergent Responses For Repair, Tanya Singh Jan 2019

Neuron-Glial (Ng) Interactions: A Microfluidic Examination Of Ng Emergent Responses For Repair, Tanya Singh

Dissertations and Theses

Neuron-glia communication is crucial to the development, plasticity, and repair of the nervous system (NS). While neurons are well known to conduct electrical impulses that transfer biological information and stimuli throughout the NS, our understanding of the roles of glia continues to evolve from when the cells were largely believed to act solely for neuronal support. Recent decades of research has shown that glia can alter metabolism, conduct impulses and change phenotype for NS repair. NG interactions have, thereby, become heavily researched in varied areas of biomedical engineering, including embryogenesis, neural regeneration, growth, and intracellular synaptic activity. However, while NG …


Collective Chemotaxis Of Retinal Neural Cells From Drosophila Melanogaster In Controlled Microenvironments, Stephanie Zhang Jan 2018

Collective Chemotaxis Of Retinal Neural Cells From Drosophila Melanogaster In Controlled Microenvironments, Stephanie Zhang

Dissertations and Theses

More than 172 million people are influenced by a retinal disorder that stems from either age-related or developmental causes. Of those, 1.5 million people endure a developmental retinal disorder. In the developing retina, neural cells undergo a series of highly complicated differentiation and migration process. A main cause of these diseases is abnormal collective migration of neural progenitors hindering the retinogenesis process. However, our grasp of collective migration and signaling molecules, critical to the developing retina, is incompletely understood. Understanding the molecular mechanisms, such as the fibroblast growth factor pathway, that regulate glial and neuronal migration provides decisive insights in …


Chemotaxis Of Drosophila Glia With Controlled Microenvironments, Cade Beck Jan 2012

Chemotaxis Of Drosophila Glia With Controlled Microenvironments, Cade Beck

Dissertations and Theses

No abstract provided.