Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

External Link

Alisha L. Sarang-Sieminski

Capillary morphogenesis;endothelial cell;biomaterial;self-assembling;adhesion

Articles 1 - 1 of 1

Full-Text Articles in Biomedical Engineering and Bioengineering

Primary Sequence Of Ionic Self-Assembling Peptide Gels Affects Endothelial Cell Adhesion And Capillary Morphogenesis, Alisha Sarang-Sieminski, C. Semino, Haiyan Gong, Roger Kamm Apr 2012

Primary Sequence Of Ionic Self-Assembling Peptide Gels Affects Endothelial Cell Adhesion And Capillary Morphogenesis, Alisha Sarang-Sieminski, C. Semino, Haiyan Gong, Roger Kamm

Alisha L. Sarang-Sieminski

Appropriate choice of biomaterial supports is critical for the study of capillary morphogenesis in vitro as well as to support vascularization of engineered tissues in vivo. Self-assembling peptides are a class of synthetic, ionic, oligopeptides that spontaneously assemble into gels with an ECM-like microarchitecture when exposed to salt. In this paper, the ability of four different self-assembling peptide gels to promote endothelial cell adhesion and capillary morphogenesis is explored. Human umbilical vein endothelial cells (HUVECs) were cultured within ionic self-assembling peptide family members, RAD16-I ((RADA)4), RAD16-II ((RARADADA)2), KFE-8 ((FKFE)2), or KLD-12 ((KLDL)3). …