Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Biomedical Engineering and Bioengineering

Analysis Of An Existing Method In Refinement Of Protein Structure Predictions Using Cryo-Em Images, Maytha Alshammari, Jing He, Willy Wriggers, Jiangwen Sun Apr 2022

Analysis Of An Existing Method In Refinement Of Protein Structure Predictions Using Cryo-Em Images, Maytha Alshammari, Jing He, Willy Wriggers, Jiangwen Sun

College of Sciences Posters

Protein structure prediction produces atomic models from its amino acid sequence. Three-dimensional structures are important for understanding the function mechanism of proteins. Knowing the structure of a given protein is crucial in drug development design of novel enzymes. AlphaFold2 is a protein structure prediction tool with good performance in recent CASP competitions. Phenix is a tool for determination of a protein structure from a high-resolution 3D molecular image. Recent development of Phenix shows that it is capable to refine predicted models from AlphaFold2, specifically the poorly predicted regions, by incorporating information from the 3D image of the protein. The goal …


Human Interaction With Fake News, Autumn Woodson, Sampath Jayarathna (Mentor) Jan 2022

Human Interaction With Fake News, Autumn Woodson, Sampath Jayarathna (Mentor)

Computer & Information Science: Research Experiences for Undergraduates in Disinformation Detection and Analytics

No abstract provided.


A Highly Conductive, Flexible, And 3d-Printable Carbon Nanotube-Elastomer Ink For Additive Bio-Manufacturing, Andy Shar, Phillip Glass, Daeha Joung Ph.D. Jan 2022

A Highly Conductive, Flexible, And 3d-Printable Carbon Nanotube-Elastomer Ink For Additive Bio-Manufacturing, Andy Shar, Phillip Glass, Daeha Joung Ph.D.

Undergraduate Research Posters

The synthesis of a highly conductive, flexible, 3D-printable, and biocompatible ink has been of great interest in the field of bio-based additive manufacturing. Various applications include ultra-sensitive, microscale tactile sensors, patient-customizable scaffolds for cardiac and nerve tissue regeneration, and flexible electrocardiogram (ECG) electrodes. Here, a novel elastomeric carbon nanocomposite is presented consisting of amino-functionalized carbon nanotubes (CNT-NH2) homogenously dispersed in a one-part room-temperature vulcanizing (RTV) silicone matrix. The use of acetone as a swelling solvent aids in electrical percolation through the elastomer matrix. CNT-NH2 ratios can be tuned to fit various needs; higher tensile strength is favored …


Methodology Development For The Implementation Ofmicrofluidic Mixers, Tahir Butt, Gautam Mahajan Jan 2018

Methodology Development For The Implementation Ofmicrofluidic Mixers, Tahir Butt, Gautam Mahajan

Undergraduate Research Posters 2018

Microfluidic platforms have been widely regarded as defining technologies for the development of chemical and biological synthesis and analysis systems, due to benefits associated with reduced reactant consumption, increases by orders of magnitude of the surface-to-volume ratios, and greatly enhanced control over reactions variables such as temperature and pressure. However, one of the bottlenecks for their wide application is the difficulty in achieving mixing, given the typical laminar flows in these systems. In this work we implement experimentally, various strategies using geometrical features to control the fluid motion and induce stirring flows. The mixers are fabricated using soft-lithography in PDMS …


Implementation Of A Reverse Staggered-Herringbone Microfluidic Mixer For High-Throughput Polymeric Nanoparticles Synthesis, Alexa Roberts Jan 2018

Implementation Of A Reverse Staggered-Herringbone Microfluidic Mixer For High-Throughput Polymeric Nanoparticles Synthesis, Alexa Roberts

Undergraduate Research Posters 2018

The goal of this research is to implement and optimize the operating conditions of a microfluidic mixer to synthesize polymeric nanoparticles (NPs) in a high-throughput fashion. Using a reverse staggered-herringbone microfluidic mixer that we recently designed, the effects of experimental conditions such as flowrate and reactant composition on NP characteristics were investigated and optimized. The device design allowed for physical contact between two streams of fluids – one containing poly(lactic-co-glycolic acid; PLGA) in acetonitrile and the other deionized water, to allow for efficient mixing and NP precipitation to occur. The resulting NPs were characterized using dynamic light scattering (DLS) and …


Boundary Effects On The Locomotion Of Active Janus Particles, Marola W. Issa, Nicky R. Baumgartner Jan 2018

Boundary Effects On The Locomotion Of Active Janus Particles, Marola W. Issa, Nicky R. Baumgartner

Undergraduate Research Posters 2018

Self-propelled or “active” micrometer scale particles are capable of supplying local mechanical work, necessary for microscale cargo delivery and useful in other applications within bioimaging and sensing. Research in the last decade has focused on developing, measuring, and manipulating the locomotion mechanisms of active particles in simple environments. However, many applications will be in complex environments with nearby boundaries or variations in physiochemical cues. This poster reports the directed motion of platinum coated polystyrene particles at infinite dilution in the presence of H2O2, which acts as a fuel to drive motion. A transport mechanism called “diffusiophoresis” drives motion of the …


P1: Using Modified Dean Flow Designs To Increase Mixing Performance, Joshua Clark Jan 2017

P1: Using Modified Dean Flow Designs To Increase Mixing Performance, Joshua Clark

Undergraduate Research Posters 2017

We are using numerical solutions for the Navier-Stokes equations and the concentration - diffusion equation to model fluid flow and reactant distribution in serpentine type channels for micromixers/microreactors development. These mixers exploit centripetal forces on the fluid to induce cross-sectional fluid mixing, aka Dean flows. Various modifications are used to increase the mixing character of these crosssectional flows. We found that the performance of these mixers exceeds that of unmodified channels and we currently assess their performance relative to other state of the art methodologies used to induce mixing on the microscale.


Going Green: Experimental Adaptation Of Scenedesmus Dimorphus To Marine Conditions, Mohammed Khalil Jan 2017

Going Green: Experimental Adaptation Of Scenedesmus Dimorphus To Marine Conditions, Mohammed Khalil

Undergraduate Research Posters 2017

Algae has gained some interest as the need for alternative fuels becomes more pressing. Reliance on fossil fuels is causing our environment and economy harm, and is not sustainable moving forward. Lipid rich algae strains can be used in the production of biofuels, and provide an alternative fuel source. One challenge facing the prospect of algae as a fuel source is that lipid rich algae grows exclusively in freshwater. Considering the scarcity and cost to use freshwater for algae growth, interest has grown in the possibility of adapting lipid rich, freshwater algae to a seawater environment. Seawater can have up …


P2: Implementation Of Groove Based Designs For Engineering Fluid Flow In Micromixers, Tahir Butt Jan 2017

P2: Implementation Of Groove Based Designs For Engineering Fluid Flow In Micromixers, Tahir Butt

Undergraduate Research Posters 2017

Mixing on microscale is important for the development of miniaturized chemical reactors that use small quantities of reactants and allow better control over the reaction conditions and products. Nevertheless, achieving rapid mixing in this type of micro-reactors is challenging due to the lack of turbulence and slow diffusion on the microscale. In this work we implement micromixers designs based on surface groove/ridge patterns targeted at inducing cross-sectional flows that both extend the interface between the different reactants, as well as induce chaotic advection. We discuss the fabrication of these structures using soft-lithography in PDMS employing a mold and their optical …