Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

A Numerical Investigation Of Human Cough Jet Development And Droplet Dispersion, Ran Bi Apr 2018

A Numerical Investigation Of Human Cough Jet Development And Droplet Dispersion, Ran Bi

Electronic Thesis and Dissertation Repository

As part of the Western Cold and Flu aerosol (WeCoF) studies, the present study provides Computational Fluid Dynamics (CFD) modelling of human cough flow. The cough flow is characterized in two different aspects, the flow field and the droplets. In the study of the flow field of coughing, various dynamic characteristics, including the velocity variation, streamwise penetration and power spectral density, are examined. CFD simulations using two different approaches, the unsteady Reynolds Averaged Navier-Stokes (URANS) and the large eddy simulation (LES), are performed for comparison purposes. The numerical results are validated by the experimental data obtained from the measurements by …


Eigenstrain As A Mechanical Set-Point Of Cells, Shengmao Lin, Marsha C. Lampi, Cynthia A. Reinhart-King, Gary C.P. Tsui, Jian Wang, Carl A. Nelson, Linxia Gu Feb 2018

Eigenstrain As A Mechanical Set-Point Of Cells, Shengmao Lin, Marsha C. Lampi, Cynthia A. Reinhart-King, Gary C.P. Tsui, Jian Wang, Carl A. Nelson, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

Cell contraction regulates how cells sense their mechanical environment. We sought to identify the set-point of cell contraction, also referred to as tensional homeostasis. In this work, bovine aortic endothelial cells (BAECs), cultured on substrates with different stiffness, were characterized using traction force microscopy (TFM). Numerical models were developed to provide insights into the mechanics of cell–substrate interactions. Cell contraction was modeled as eigenstrain which could induce isometric cell contraction without external forces. The predicted traction stresses matched well with TFM measurements. Furthermore, our numerical model provided cell stress and displacement maps for inspecting the fundamental regulating mechanism of cell …


Development Of Novel Models To Study Deep Brain Effects Of Cortical Transcranial Magnetic Stimulation, Farheen Syeda Jan 2018

Development Of Novel Models To Study Deep Brain Effects Of Cortical Transcranial Magnetic Stimulation, Farheen Syeda

Theses and Dissertations

Neurological disorders require varying types and degrees of treatments depending on the symptoms and underlying causes of the disease. Patients suffering from medication-refractory symptoms often undergo further treatment in the form of brain stimulation, e.g. electroconvulsive therapy (ECT), transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), or transcranial magnetic stimulation (TMS). These treatments are popular and have been shown to relieve various symptoms for patients with neurological conditions. However, the underlying effects of the stimulation, and subsequently the causes of symptom-relief, are not very well understood. In particular, TMS is a non-invasive brain stimulation therapy which uses time-varying magnetic …