Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biomedical Engineering and Bioengineering

Design Of Human Serum Albumin And Adenovirus Conjugation Via Catcher/Tag Molecular Glue, Peijie Zhao Dec 2023

Design Of Human Serum Albumin And Adenovirus Conjugation Via Catcher/Tag Molecular Glue, Peijie Zhao

McKelvey School of Engineering Theses & Dissertations

Adenovirus (Ad) has been the ideal cargo delivery mechanism, and its moderate immunological response makes it ideal for in vivo gene therapies since its discovery in 1953. However, the robust immunogenicity of the Ad capsid and low vaccine absorption via mucous membranes and epithelium put a limit on the process of developing intranasal vaccines. Efforts are being made to enhance the effectiveness of Ad vectors and numerous studies have demonstrated the remarkable capacity of human serum albumin (HSA) to extend plasma half-life and facilitate targeted intranasal delivery. In this study, we devised an innovative method for employing the Catcher/Tag molecular …


Dual Color Optogenetic Control For Analyzing Cardiac Function In Drosophila, Jiantao Zhu May 2023

Dual Color Optogenetic Control For Analyzing Cardiac Function In Drosophila, Jiantao Zhu

McKelvey School of Engineering Theses & Dissertations

Prolonged consumption of carbohydrate-rich diets and immobile lifestyles frequently cause metabolic disorders and obesity and, as a result, may lead to progressive heart dysfunction among broad social groups of the population. Drosophila melanogaster serves as an essential model organism in cardiovascular disease research due to conserved physiological and genomic traits shared with humans, its genetic and molecular toolbox versatility, and cost-effective maintenance. Here, we combine optogenetics and optical coherence tomography to study cardiovascular function in D. melanogaster. A new optogenetic pacing system has been developed, employing a transgenic line carrying two opsins: ChR2 and NpHR2.0. A custom-built hardware setup …


Computational Fluid Dynamics Modeling Of Hemodialysis In Patients With An Arteriovenous Fistula, Maximilian Roth Dec 2022

Computational Fluid Dynamics Modeling Of Hemodialysis In Patients With An Arteriovenous Fistula, Maximilian Roth

McKelvey School of Engineering Theses & Dissertations

With the advent of arteriovenous fistula (AVF) for use in hemodialysis, the anastomosis built for such use has become a central point of the study to understand the flow and wall shear stresses in such a system since very large wall shear stresses can lead to arterial/vein rupture. Considering the commonly used creation site of an anastomosis as connecting the radial artery to the cephalic vein, a model is created to calculate the wall shear stresses across various components of the system. The model depicts a connection of the specified vein and artery bridged together allowing the increase in blood …


Exploring Attacks And Defenses In Additive Manufacturing Processes: Implications In Cyber-Physical Security, Nicholas Deily May 2020

Exploring Attacks And Defenses In Additive Manufacturing Processes: Implications In Cyber-Physical Security, Nicholas Deily

McKelvey School of Engineering Theses & Dissertations

Many industries are rapidly adopting additive manufacturing (AM) because of the added versatility this technology offers over traditional manufacturing techniques. But with AM, there comes a unique set of security challenges that must be addressed. In particular, the issue of part verification is critically important given the growing reliance of safety-critical systems on 3D printed parts. In this thesis, the current state of part verification technologies will be examined in the con- text of AM-specific geometric-modification attacks, and an automated tool for 3D printed part verification will be presented. This work will cover: 1) the impacts of malicious attacks on …


The Role Of Obesity And Dietary Fatty Acid Content In Regulating Humeral Bone And Cartilage Homeostasis, Lauren Votava Apr 2018

The Role Of Obesity And Dietary Fatty Acid Content In Regulating Humeral Bone And Cartilage Homeostasis, Lauren Votava

McKelvey School of Engineering Theses & Dissertations

Objective: The goal of this study was to investigate the effects of different dietary fatty acids in the context of diet-induced obesity on bone and cartilage in the humerus. It is known that obesity increases the severity of injury-induced osteoarthritis in the knee, however it is not fully understood what pathological changes have occurred due to diet alone1. Additionally, while it is known that shoulder osteoarthritis has a link to obesity, the alterations in this joint are incompletely described.

Methods: In order to examine diet-induced changes in both bone and cartilage, this research utilized mice that had been …


Development And Validation For A Mobile Speech-In-Noise Audiometric Task, Tommy Peng Aug 2017

Development And Validation For A Mobile Speech-In-Noise Audiometric Task, Tommy Peng

McKelvey School of Engineering Theses & Dissertations

Traditional speech-in-noise hearing tests are performed by clinicians with specialized equipment. Furthermore, these tasks often present contextually weak sentences in background babble, which are poor representations of real-world situations. This study proposes a mobile audiometric task, Semantic Auditory Search, which uses the Android platform to bypass the need for specialized equipment and presents multiple tasks of two competing real-world conversations to estimate the user’s speech-in-noise hearing ability. Through linear regression models built from data of seventy-nine subjects, three Semantic Auditory Search metrics have been shown to have statistically significant (p < 0.05) with medium effects sizes for predicting QuickSIN SNR50. The internal consistency of the task was also high, with a Cronbach’s alpha of 0.88 or more across multiple metrics. In conclusion, this preliminary study suggests that Semantic Auditory Search can accurately and reliably perform as an automated speech-in-noise hearing test. It also has tremendous potential for extension into automated tests of cognitive function, as well.