Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Biomedical Engineering and Bioengineering

Photonic Crystal Hydrogels: Simulation, Fabrication & Biomedical Application, Mehenur Sarwar Jan 2022

Photonic Crystal Hydrogels: Simulation, Fabrication & Biomedical Application, Mehenur Sarwar

FIU Electronic Theses and Dissertations

Photonic crystal (PhC) hydrogels are a unique class of material that has tremendous promise as biomedical sensors. The underlying crystal structure allows for simple analysis of microstructural properties by assessing the diffraction pattern generated following laser illumination. The hydrogel medium provides elasticity, regenerability, and potential functionalization. Combining these two properties, photonic crystal hydrogels have the potential for sensing physical forces and chemical reagents using a low-cost, reusable platform.

The development of biomedical sensors using this material is limited due to the lack of a method to accurately predict the diffraction pattern generated. To overcome this, a computational model was developed …


A Comprehensive Analysis Of Balance, Symmetry, And Center Of Mass In The Gait Cycle Of Transfemoral Amputees, Kayla T. Etienne Jul 2020

A Comprehensive Analysis Of Balance, Symmetry, And Center Of Mass In The Gait Cycle Of Transfemoral Amputees, Kayla T. Etienne

FIU Electronic Theses and Dissertations

The purpose of this thesis is to create a framework that assists in the transfemoral prosthesis fitting process by calculating balance and symmetry to quantify patient comfort with an understanding of bipedal locomotion and human anatomy. Three different software applications were used to compare (1) the body position during gait cycle, (2) the natural and amputee anatomies, (3) the natural and prosthetic legs, and (4) the equilibrium and torque movements of the hip, knee, and ankle joints. Models were created in Maya for analysis in Solidworks and MEL code evaluation with MatLab. The MatLab code tested combinations of joint degrees …


3d Architectural Analysis Of Neurons, Astrocytes, Vasculature & Nuclei In The Motor And Somatosensory Murine Cortical Columns, Jared Leichner Jul 2020

3d Architectural Analysis Of Neurons, Astrocytes, Vasculature & Nuclei In The Motor And Somatosensory Murine Cortical Columns, Jared Leichner

FIU Electronic Theses and Dissertations

Characterization of the complex cortical structure of the brain at a cellular level is a fundamental goal of neuroscience which can provide a better understanding of both normal function as well as disease state progression. Many challenges exist however when carrying out this form of analysis. Immunofluorescent staining is a key technique for revealing 3-dimensional structure, but subsequent fluorescence microscopy is limited by the quantity of simultaneous targets that can be labeled and intrinsic lateral and isotropic axial point-spread function (PSF) blurring during the imaging process in a spectral and depth-dependent manner. Even after successful staining, imaging and optical deconvolution, …


Development Of Gaussian Learning Algorithms For Early Detection Of Alzheimer's Disease, Chen Fang Mar 2020

Development Of Gaussian Learning Algorithms For Early Detection Of Alzheimer's Disease, Chen Fang

FIU Electronic Theses and Dissertations

Alzheimer’s disease (AD) is the most common form of dementia affecting 10% of the population over the age of 65 and the growing costs in managing AD are estimated to be $259 billion, according to data reported in the 2017 by the Alzheimer's Association. Moreover, with cognitive decline, daily life of the affected persons and their families are severely impacted. Taking advantage of the diagnosis of AD and its prodromal stage of mild cognitive impairment (MCI), an early treatment may help patients preserve the quality of life and slow the progression of the disease, even though the underlying disease cannot …


The Effect Of Hyperthermia On Doxorubicin Therapy And Nanoparticle Penetration In Multicellular Ovarian Cancer Spheroids, Abhignyan Nagesetti Feb 2017

The Effect Of Hyperthermia On Doxorubicin Therapy And Nanoparticle Penetration In Multicellular Ovarian Cancer Spheroids, Abhignyan Nagesetti

FIU Electronic Theses and Dissertations

The efficient treatment of cancer with chemotherapy is challenged by the limited penetration of drugs into the tumor. Nanoparticles (10 – 100 nanometers) have emerged as a logical choice to specifically deliver chemotherapeutics to tumors, however, their transport into the tumor is also impeded owing to their bigger size compared to free drug moieties. Currently, monolayer cell cultures, as models for drug testing, cannot recapitulate the structural and functional complexity of in-vivo tumors. Furthermore, strategies to improve drug distribution in tumor tissues are also required. In this study, we hypothesized that hyperthermia (43°C) will improve the distribution of silica nanoparticles …


Cobalt Ferrite Nanoparticles Fabricated Via Co-Precipitation In Air: Overview Of Size Control And Magnetic Properties, Dennis Toledo Nov 2015

Cobalt Ferrite Nanoparticles Fabricated Via Co-Precipitation In Air: Overview Of Size Control And Magnetic Properties, Dennis Toledo

FIU Electronic Theses and Dissertations

Cobalt Ferrite has important, size-dependent magnetic properties. Consequently, an overview of particle size is important. Co-precipitation in air was the fabrication method used because it is comparatively simple and safe. The effects of three different reaction times including 1, 2, 3 hour(s) on particle size were compared. Also, the effectiveness of three different capping agents (Oleic Acid, Polyvinylpyrollidone (PVP), and Trisodium Citrate) in reducing aggregation and correspondingly particle size were examined. Using Welch’s analysis of variance (ANOVA) and the relevant post hoc tests, there was no significant difference (p=0.05) between reaction times of 1 hour and 2 hours, but there …


Development Of Point-Of-Care Testing Sensors For Biomarker Detection, Xuena Zhu Apr 2015

Development Of Point-Of-Care Testing Sensors For Biomarker Detection, Xuena Zhu

FIU Electronic Theses and Dissertations

Point-of-care testing (POCT) is defined as medical testing at or near the site of patient care and has become a critical component of the diagnostic industry. POCT has many advantages over tests in centralized laboratories including small reagent volumes, small size, rapid turnaround time, cost-effectiveness, low power consumption and functional integration of multiple devices. Paper-based POCT sensors are a new alternative technology for fabricating simple, low-cost, portable and disposable analytical devices for clinical diagnosis.

The focus of this dissertation was to develop simple, rapid and low cost paper-based POCT sensors with high sensitivity and portability for disease biomarker detection. Lateral …


Movement Effects On The Flow Physics And Nutrient Delivery In Engineered Valvular Tissues, Manuel Salinas Nov 2014

Movement Effects On The Flow Physics And Nutrient Delivery In Engineered Valvular Tissues, Manuel Salinas

FIU Electronic Theses and Dissertations

Mechanical conditioning has been shown to promote tissue formation in a wide variety of tissue engineering efforts. However the underlying mechanisms by which external mechanical stimuli regulate cells and tissues are not known. This is particularly relevant in the area of heart valve tissue engineering (HVTE) owing to the intense hemodynamic environments that surround native valves. Some studies suggest that oscillatory shear stress (OSS) caused by steady flow and scaffold flexure play a critical role in engineered tissue formation derived from bone marrow derived stem cells (BMSCs). In addition, scaffold flexure may enhance nutrient (e.g. oxygen, glucose) transport. In this …


Neuromuscular Changes In Older Adults During The Lateral Step Task, Tatiana Bejarano Nov 2014

Neuromuscular Changes In Older Adults During The Lateral Step Task, Tatiana Bejarano

FIU Electronic Theses and Dissertations

Older adults may have trouble when performing activities of daily living due to decrease in physical strength and degradation of neuromotor and musculoskeletal function. Motor activation patterns during Lateral Step Down and Step Up from 4-inch and 8-inch step heights was assessed in younger (n=8, 24.4 years) and older adults (n=8, 58.9 years) using joint angle kinematics and electromyography of lower extremity muscles. Ground reaction forces were used to ascertain the loading, stabilization and unloading phases of the tasks. Older adults had an altered muscle activation sequence and significantly longer muscle bursts during loading for the tibialis anterior, gastrocnemius, vastus …


Investigating The Role Of A Less Uranium Tolerant Strain, Isolated From The Hanford Site Soil, On Uranium Interaction In Polyphosphate Remediation Technology, Paola Sepulveda Medina Mar 2014

Investigating The Role Of A Less Uranium Tolerant Strain, Isolated From The Hanford Site Soil, On Uranium Interaction In Polyphosphate Remediation Technology, Paola Sepulveda Medina

FIU Electronic Theses and Dissertations

Bacteria are key players in the processes that govern fate and transport of contaminants. Previous assessment showed that the Arthrobacter oxydans (A.oxydans) G968 strain has a lower ability to tolerate U(VI) toxicity in bicarbonate-free media compared to other isolate A.oxydans G975. The study experimentally investigated several parameters such as the potential of bicarbonate to accelerate U(VI) release from autunite mineral in the presence of a less U(VI) tolerant bacterial strain, in the conditions mimicking Hanford Site subsurface environments. Results showed that despite morphological differences between the two bacterial strains, A.oxydans G968 and G975, they are able to dissolute uranium at …


Bionano Electronics: Magneto-Electric Nanoparticles For Drug Delivery, Brain Stimulation And Imaging Applications, Rakesh Guduru Sep 2013

Bionano Electronics: Magneto-Electric Nanoparticles For Drug Delivery, Brain Stimulation And Imaging Applications, Rakesh Guduru

FIU Electronic Theses and Dissertations

Nanoparticles are often considered as efficient drug delivery vehicles for precisely dispensing the therapeutic payloads specifically to the diseased sites in the patient’s body, thereby minimizing the toxic side effects of the payloads on the healthy tissue. However, the fundamental physics that underlies the nanoparticles’ intrinsic interaction with the surrounding cells is inadequately elucidated. The ability of the nanoparticles to precisely control the release of its payloads externally (on-demand) without depending on the physiological conditions of the target sites has the potential to enable patient- and disease-specific nanomedicine, also known as Personalized NanoMedicine (PNM). In this dissertation, magneto-electric nanoparticles (MENs) …


Modeling Of Loose Contamination Scenarios To Predict The Amount Of Contamination Removed, Duriem Calderin Morales Jul 2010

Modeling Of Loose Contamination Scenarios To Predict The Amount Of Contamination Removed, Duriem Calderin Morales

FIU Electronic Theses and Dissertations

The objective of this research is to evaluate the influence of the factors identified by the Johnson, Kendall and Robert’s theory that affect the strength of the detachment force necessary to remove a particle of contaminant from a surface, and the roughness of the surface in which the contaminant is present, on predicting the efficiency of removal of loose contamination. Two methods were used to reach this objective: the first method consisted of quantifying the contamination by weight and the second method of quantifying the contamination by counting alpha and gamma particles. As a result, it was determined that for …