Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Biomedical Engineering and Bioengineering

Correlation Enhanced Distribution Adaptation For Prediction Of Fall Risk, Ziqi Guo, Teresa Wu, Thurmon Lockhart, Rahul Soangra, Hyunsoo Yoon Feb 2024

Correlation Enhanced Distribution Adaptation For Prediction Of Fall Risk, Ziqi Guo, Teresa Wu, Thurmon Lockhart, Rahul Soangra, Hyunsoo Yoon

Physical Therapy Faculty Articles and Research

With technological advancements in diagnostic imaging, smart sensing, and wearables, a multitude of heterogeneous sources or modalities are available to proactively monitor the health of the elderly. Due to the increasing risks of falls among older adults, an early diagnosis tool is crucial to prevent future falls. However, during the early stage of diagnosis, there is often limited or no labeled data (expert-confirmed diagnostic information) available in the target domain (new cohort) to determine the proper treatment for older adults. Instead, there are multiple related but non-identical domain data with labels from the existing cohort or different institutions. Integrating different …


Counterventions: A Reparative Reflection On Interventionist Hci, Rua Mae Williams, Louanne E. Boyd, Juan E. Gilbert Apr 2023

Counterventions: A Reparative Reflection On Interventionist Hci, Rua Mae Williams, Louanne E. Boyd, Juan E. Gilbert

Engineering Faculty Articles and Research

Research in HCI applied to clinical interventions relies on normative assumptions about which bodies and minds are healthy, valuable, and desirable. To disrupt this normalizing drive in HCI, we define a “counterventional approach” to intervention technology design informed by critical scholarship and community perspectives. This approach is meant to unsettle normative assumptions of intervention as urgent, necessary, and curative. We begin with a historical overview of intervention in HCI and its critics. Then, through reparative readings of past HCI projects in autism intervention, we illustrate the emergent principles of a counterventional approach and how it may manifest research outcomes that …


Split And Join: An Efficient Approach For Simulating Stapled Intestinal Anastomosis In Virtual Reality, Di Qi, Suvranu De Feb 2023

Split And Join: An Efficient Approach For Simulating Stapled Intestinal Anastomosis In Virtual Reality, Di Qi, Suvranu De

Engineering Faculty Articles and Research

Colorectal cancer is a life-threatening disease. It is the second leading cause of cancer-related deaths in the United States. Stapled anastomosis is a rapid treatment for colorectal cancer and other intestinal diseases and has become an integral part of routine surgical practice. However, to the best of our knowledge, there is no existing work simulating intestinal anastomosis that often involves sophisticated soft tissue manipulations such as cutting and stitching. In this paper, for the first time, we propose a novel split and join approach to simulate a side-to-side stapled intestinal anastomosis in virtual reality. We mimic the intestine model using …


Dimensionality Reduction For Classification Of Object Weight From Electromyography, Elnaz Lashgari, Uri Maoz Aug 2021

Dimensionality Reduction For Classification Of Object Weight From Electromyography, Elnaz Lashgari, Uri Maoz

Psychology Faculty Articles and Research

Electromyography (EMG) is a simple, non-invasive, and cost-effective technology for measuring muscle activity. However, multi-muscle EMG is also a noisy, complex, and high-dimensional signal. It has nevertheless been widely used in a host of human-machine-interface applications (electrical wheelchairs, virtual computer mice, prosthesis, robotic fingers, etc.) and, in particular, to measure the reach-and-grasp motions of the human hand. Here, we developed an automated pipeline to predict object weight in a reach-grasp-lift task from an open dataset, relying only on EMG data. In doing so, we shifted the focus from manual feature-engineering to automated feature-extraction by using pre-processed EMG signals and thus …


An Adaptive Model To Support Biofeedback In Ami Environments: A Case Study In Breathing Training For Autism, Arturo Morales, Franceli L. Cibrian, Luis A. Castro, Monica Tentori Jan 2021

An Adaptive Model To Support Biofeedback In Ami Environments: A Case Study In Breathing Training For Autism, Arturo Morales, Franceli L. Cibrian, Luis A. Castro, Monica Tentori

Engineering Faculty Articles and Research

Biofeedback systems have shown promising clinical results in regulating the autonomic nervous system (ANS) of individuals. However, they typically offer a “one-size-fits-all” solution in which the personalization of the stimuli to the needs and capabilities of its users has been largely neglected. Personalization is paramount in vulnerable populations like children with autism given their sensory diversity. Ambient intelligence (AmI) environments enable creating effective adaptive mechanisms in biofeedback to adjust the stimuli to each user’s performance. Yet, biofeedback models with adaptive mechanisms are scarce in the AmI literature. In this paper, we propose an adaptive model to support biofeedback that takes …


Admittance Method For Estimating Local Field Potentials Generated In A Multi-Scale Neuron Model Of The Hippocampus, Clayton S. Bingham, Javad Paknahad, Christopher Bc Girard, Kyle Loizos, Jean-Marie C. Bouteiller, Dong Song, Gianluca Lazzi, Theodore W. Berger Aug 2020

Admittance Method For Estimating Local Field Potentials Generated In A Multi-Scale Neuron Model Of The Hippocampus, Clayton S. Bingham, Javad Paknahad, Christopher Bc Girard, Kyle Loizos, Jean-Marie C. Bouteiller, Dong Song, Gianluca Lazzi, Theodore W. Berger

Engineering Faculty Articles and Research

Significant progress has been made toward model-based prediction of neral tissue activation in response to extracellular electrical stimulation, but challenges remain in the accurate and efficient estimation of distributed local field potentials (LFP). Analytical methods of estimating electric fields are a first-order approximation that may be suitable for model validation, but they are computationally expensive and cannot accurately capture boundary conditions in heterogeneous tissue. While there are many appropriate numerical methods of solving electric fields in neural tissue models, there isn't an established standard for mesh geometry nor a well-known rule for handling any mismatch in spatial resolution. Moreover, the …


Automatic Detection Of Dynamic And Static Activities Of The Older Adults Using A Wearable Sensor And Support Vector Machines, Jian Zhang, Rahul Soangra, Thurmon E. Lockhart Jul 2020

Automatic Detection Of Dynamic And Static Activities Of The Older Adults Using A Wearable Sensor And Support Vector Machines, Jian Zhang, Rahul Soangra, Thurmon E. Lockhart

Physical Therapy Faculty Articles and Research

Although Support Vector Machines (SVM) are widely used for classifying human motion patterns, their application in the automatic recognition of dynamic and static activities of daily life in the healthy older adults is limited. Using a body mounted wireless inertial measurement unit (IMU), this paper explores the use of an SVM approach for classifying dynamic (walking) and static (sitting, standing and lying) activities of the older adults. Specifically, data formatting and feature extraction methods associated with IMU signals are discussed. To evaluate the performance of the SVM algorithm, the effects of two parameters involved in SVM algorithm—the soft margin constant …


Ml-Medic: A Preliminary Study Of An Interactive Visual Analysis Tool Facilitating Clinical Applications Of Machine Learning For Precision Medicine, Laura Stevens, David Kao, Jennifer Hall, Carsten Görg, Kaitlyn Abdo, Erik Linstead May 2020

Ml-Medic: A Preliminary Study Of An Interactive Visual Analysis Tool Facilitating Clinical Applications Of Machine Learning For Precision Medicine, Laura Stevens, David Kao, Jennifer Hall, Carsten Görg, Kaitlyn Abdo, Erik Linstead

Engineering Faculty Articles and Research

Accessible interactive tools that integrate machine learning methods with clinical research and reduce the programming experience required are needed to move science forward. Here, we present Machine Learning for Medical Exploration and Data-Inspired Care (ML-MEDIC), a point-and-click, interactive tool with a visual interface for facilitating machine learning and statistical analyses in clinical research. We deployed ML-MEDIC in the American Heart Association (AHA) Precision Medicine Platform to provide secure internet access and facilitate collaboration. ML-MEDIC’s efficacy for facilitating the adoption of machine learning was evaluated through two case studies in collaboration with clinical domain experts. A domain expert review was also …


How Degrees Of Freedom Affects Sense Of Agency, Akima Connelly, Jungsu Pak, Tian Lan, Uri Maoz Dec 2019

How Degrees Of Freedom Affects Sense Of Agency, Akima Connelly, Jungsu Pak, Tian Lan, Uri Maoz

Student Scholar Symposium Abstracts and Posters

Can the rubber-hand illusion be extended to a moving robotic arm in different degrees of freedom (DOF), inducing sense of ownership & agency over the arm? We hypothesize that DOF closer to what humans possess will result in a stronger sense of ownership and agency.


Identification And Analysis Of Behavioral Phenotypes In Autism Spectrum Disorder Via Unsupervised Machine Learning, Elizabeth Stevens, Dennis R. Dixon, Marlena N. Novack, Doreen Granpeesheh, Tristram Smith, Erik Linstead May 2019

Identification And Analysis Of Behavioral Phenotypes In Autism Spectrum Disorder Via Unsupervised Machine Learning, Elizabeth Stevens, Dennis R. Dixon, Marlena N. Novack, Doreen Granpeesheh, Tristram Smith, Erik Linstead

Engineering Faculty Articles and Research

Background and objective: Autism spectrum disorder (ASD) is a heterogeneous disorder. Research has explored potential ASD subgroups with preliminary evidence supporting the existence of behaviorally and genetically distinct subgroups; however, research has yet to leverage machine learning to identify phenotypes on a scale large enough to robustly examine treatment response across such subgroups. The purpose of the present study was to apply Gaussian Mixture Models and Hierarchical Clustering to identify behavioral phenotypes of ASD and examine treatment response across the learned phenotypes.

Materials and methods: The present study included a sample of children with ASD (N = 2400), …


Deswelling Induced Morphological Changes In Dual Ph And Temperature Responsive Ultra-Low Crosslinked Poly (N-Isopropyl Acrylamide)-Co-Acrylic Acid Microgels, Molla R. Islam, Maddie Tumbarello, L. Andrew Lyon Mar 2019

Deswelling Induced Morphological Changes In Dual Ph And Temperature Responsive Ultra-Low Crosslinked Poly (N-Isopropyl Acrylamide)-Co-Acrylic Acid Microgels, Molla R. Islam, Maddie Tumbarello, L. Andrew Lyon

Engineering Faculty Articles and Research

Poly(N-isopropylacrylamide) microgels prepared without exogenous cross-linker are extremely “soft” as a result of their very low cross-linking density, with network connectivity arising only from the self-crosslinking of pNIPAm chains. As a result of this extreme softness, our group and others have taken interest in using these materials in a variety of bioengineering applications, while also pursuing studies of their fundamental properties. Here, we report deswelling triggered structural changes in poly(N-isopropylacrylamide-co-acrylic acid) (ULC10AAc) microgels prepared by precipitation polymerization. Dynamic light scattering suggests that the deswelling of these particles not only depends on the collapse of …


Microfluidic Cantilever Detects Bacteria And Measures Their Susceptibility To Antibiotics In Small Confined Volumes, Hashem Etayash, M. F. Khan, Kamaljit Kaur, Thomas Thundat Oct 2016

Microfluidic Cantilever Detects Bacteria And Measures Their Susceptibility To Antibiotics In Small Confined Volumes, Hashem Etayash, M. F. Khan, Kamaljit Kaur, Thomas Thundat

Pharmacy Faculty Articles and Research

In the fight against drug-resistant bacteria, accurate and high-throughput detection is essential. Here, a bimaterial microcantilever with an embedded microfluidic channel with internal surfaces chemically or physically functionalized with receptors selectively captures the bacteria passing through the channel. Bacterial adsorption inside the cantilever results in changes in the resonance frequency (mass) and cantilever deflection (adsorption stress). The excitation of trapped bacteria using infrared radiation (IR) causes the cantilever to deflect in proportion to the infrared absorption of the bacteria, providing a nanomechanical infrared spectrum for selective identification. We demonstrate the in situ detection and discrimination of Listeria monocytogenes at a …


Portable Polarimetric Fiber Stress Sensor System For Visco-Elastic And Biomimetic Material Analysis, Mark C. Harrison, Andrea M. Armani May 2015

Portable Polarimetric Fiber Stress Sensor System For Visco-Elastic And Biomimetic Material Analysis, Mark C. Harrison, Andrea M. Armani

Engineering Faculty Articles and Research

Non-destructive materials characterization methods have significantly changed our fundamental understanding of material behavior and have enabled predictive models to be developed. However, the majority of these efforts have focused on crystalline and metallic materials, and transitioning to biomaterials, such as tissue samples, is non-trivial, as there are strict sample handling requirements and environmental controls which prevent the use of conventional equipment. Additionally, the samples are smaller and more complex in composition. Therefore, more advanced sample analysis methods capable of operating in these environments are needed. In the present work, we demonstrate an all-fiber-based material analysis system based on optical polarimetry. …